[유전학 중요개념 정리] 오믹스 (Omics) 와 단일 세포 시퀀싱 (Single cell sequencing)

현재 있는 미국의 연구실은 다양한 Omics 데이터를 종합적으로 분석하여, 소아 신증후군의 정밀 의료 실현을 위한 연구를 진행하고 있습니다. 아래의 관련 포스팅과 같이, 다양한 유전체 연구 결과 대부분의 복합질환 질병 발생은 유전체의 유전자 발현을 조절하는 부분, 그리고 non-coding 영역에 존재함을 확인하게 되었습니다. 이에 연구자들은 이러한 부분이 어떠한 기작을 통해서, 질병을 발생을 시키는지에 대한 연구를 진행하고 있으며, 이러한 연구 방법론의 하나로 다양한 오믹스 관련 생명 정보들을 통합적으로 분석하고 있습니다. 오늘은 (최근에 미국의 PI와 관련 리뷰 논문을 준비하게 되어,) 오믹스 관련 분석 중에서 중요한 단일 세포 시퀀싱 (Single Cell Sequencing) 기술에 대해서 정리하는 포스팅을 남기고자 합니다.

[관련 포스팅 보기]

Omics의 개념

단일 세포 시퀀싱을 언급하기에 앞서, Omics 의 개념에 대해서 간단히 정리하고자 합니다. -ome은 집합체 (집단, 묶음)를 의미하는 접미어로 Genome (유전자의 집합체 = 유전체), Epigenome (후성 유전인자의 집합체 = 후성유전체), Transcriptome (전사인자의 집합체 = 전사체), Proteome (단백질의 집합체 = 단백체) 등 일반적으로 생물 유래의 집합체를 모두 총칭합니다. 아래 그림과 같이, 이외에도 Metabolome (대사체), Microbiome (미생물군유전체) 등을 포함하고 있습니다. 인간의 유전자 서열 (Genome)은 고정되어 있지만, 조직과 세포 종류에 따라서 유전자의 발현이 달라지고, 그에 따라 단백질의 양과 기능도 달라지게 됩니다. 즉, 유전자 서열을 해독하는 것 이상으로 훨씬 더 복잡한 유전자의 조절 기작을 이해하는 것이 질병 발생 메커니즘을 밝혀, 치료에 적용하는데 매우 중요하게 됩니다. 따라서, 유전자 서열 만으로는 설명이 되지 않는 많은 부분들은 그 보다 더 높은 차원에 존재하는 다양한 Omics들을 분석함으로써 이해하고자 하는 것이 Omics의 목표입니다.

단일 세포 분석이 왜 중요한가? Bulk vs. Single cell

우리 몸의 모든 세포는 체세포 변이 (Somatic mutation)를 제외하고 기본적으로 동일한 유전자의 염기 서열 (Germline)을 공유하고 있습니다. 그러나 조직과 기관에 따라 다양한 세포군이 서로 다른 기능을 수행하면서 생명현상을 이어나가고 있습니다. 따라서 세포의 종류에 따라 세포 특이적인 유전자의 발현 패턴의 차이를 확인하는 것은 매우 중요하게 됩니다. 그러나 전통적인 Bulk RNA-seq (전사체 시퀀싱)의 경우는 모든 세포들을 하나로 pooling하여 유전자의 발현량의 평균 값만을 구할 수 있게 됩니다. 그에 반해 단일 세포 시퀀싱 (Single cell RNA-seq)은 개별 세포를 세포의 종류에 따라 분류하고, 개별 세포의 발현량을 구할 수 있기 때문에 더 정확하게 개별 세포의 유전자 발현량의 차이를 알 수 있다는 장점이 있습니다. 특히나 종양 세포와 같은 경우에는 이질성 (Tumor heterogeneity)이 매우 크기 때문에, 집단의 유전자 발현이 개별 세포를 모두 대표하기 어려운 경우가 많습니다. 이러한 장점으로 인해, 최근에는 단일 세포의 다양한 omics data를 profiling하는 것이 점점 폭넓게 연구되고 있습니다.

[Bulk vs. Single cell RNA 시퀀싱의 비교] 기술적 발전으로 인해, 개별 세포의 유전자 발현 패턴을 더 정확하게 검출할 수 있게 되었습니다.

어떻게 단일 세포로 분리하는가?

[세포를 단일 세포로 분류하는 다양한 방법들]

위 그림은 세포들을 개별 세포로 분리하는 다양한 기술들을 보여주고 있습니다. 최근 널리 쓰이는 가장 대표적인 기술은 세포들을 개별 미세 유체 방울로 분리하는 Microfluidic droplet 기반의 기술 (Chromium 10X)과 비슷하게 하나의 plate에서 미세하게 세포를 흘려 분리하는 Microfluidic plate 기반의 기술 (Fluidigm C1)이 있습니다. Fluidigm C1 기술은 구분할 수 있는 세포의 수는 적지만 더 폭넓고 많은 전사체 시퀀싱 결과를 얻을 수 있다는 장점이 있고, Chromium 기술은 그에 반해 더 많은 수의 세포를 얻을 수 있지만, 얻을 수 있는 시퀀싱 리드의 정보는 제한적이라는 차이가 있습니다. 아래 표와 같이 연구자들은 실험의 목적에 따라서 각 방법의 장단점을 파악하고 사용하는 것이 좋겠습니다.

다음 포스팅에서는 이러한 단일 세포 분석 기술을 바탕으로 Epigenome과 Transcriptome을 분석하는데 중요한 개념인 scATAC-seq에 대해서 정리하도록 하겠습니다.

[ References ]

Murphy, Rachel. “An Integrative Approach to Assessing Diet–Cancer Relationships.” Metabolites 10.4 (2020): 123.

Kolodziejczyk, Aleksandra A., et al. “The technology and biology of single-cell RNA sequencing.” Molecular cell 58.4 (2015): 610-620.

Kashima, Yukie, et al. “Single-cell sequencing techniques from individual to multiomics analyses.” Experimental & Molecular Medicine 52.9 (2020): 1419-1427.

[논문 소개] 담관암(Biliary Tract Cancer)의 정밀 의료 실현을 위한 연구

작년부터 미국에 오기 직전까지 부랴부랴 리비젼을 하느라 너무 힘들었던 논문이 드디어 온라인 게제가 되어서, 소개를 해볼까합니다. 사실 이 프로젝트는 2017년부터 무려 햇수로는 4년간 끌어왔던 프로젝트인데, 그래도 이렇게 마무리를 짓고 소개를 할 수 있어서 다행입니다. 유전체 연구로 박사 과정을 막 시작하면서, 평소에 알고 지내던 김민환 교수님으로 부터 담관암 (Biliary Tract Cancer) 공동연구를 제안 받게 되었고, 매우 힘들고 지난했던 시간들을 겪으면서 마무리를 짓게 되었습니다.

[관련 논문 보기]

https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.31862

논문의 제목은 “Molecular Characterization of Biliary Tract Cancer Predicts Chemotherapy and PD‐1/PD‐L1 Blockade Responses“으로, 우리 나라를 포함한 동아시아에 호발하는 담관암의 약물 치료 (화학항암제와 면역항암제) 반응에 관한 유전체 연구입니다. 사실 이 블로그에도 이 연구를 진행하면서, 공부했던 많은 흔적들이 남아있기도 합니다.

[관련 포스팅 보기]

담관암은 그 해부학적 위치 때문에 매우 이질적이고, 같은 종류의 암도 유전적 특성이 다양합니다. 매우 불량한 예후와 달리, 약물 치료 옵션은 매우 제한적이고, 아직까지 어떤 환자가 어떤 치료제에 잘 반응을 할지 예측하기가 어렵습니다. 이번 연구는 이러한 어려움을 겪는 담관암 환자들에게 도움이 되기를 바라는 마음에서 진행했습니다. 개인적으로는 병원에서 인턴 생활을 하면서, 너무나 힘들게 투병 생활을 하셨던 담관암 환자 분이 기억에 나서, 그 분을 생각하면서 진행했던 연구이기도 합니다.

이번 연구에서는 수술적으로 절제가 불가능하거나 재발하여 항암 치료를 받는 담도암 환자들을 대상으로 환자의 치료 반응과 종양의 어떤 유전적 변화가 관련이 있는지를 종합적으로 분석했습니다. 담도암은 해부학적 위치에 따라, 간내담관암 (Intrahepatic cholangiocarcinoma, ICC), 간외담관암 (Extrahepatic cholangiocarcinoma, ECC), 담낭암 (Gallbladder cancer, GBC), 그리고 바터팽대부암 (Ampullar of Vater cancer, AOV) 으로 구분합니다. 특히, 같은 간내담관암 (ICC)도 병리학적 & 분자생리학적으로 완전히 다른 대담관 (large-duct)소담관 (small-duct) 유형으로 구분을 할 수 있는데, 이 두 유형의 확연히 다른 항암제 반응에 착안하여 항암제 반응과 연관된 유전적 변화를 발굴하는 실마리를 얻을 수 있었습니다. 더불어 최근 매우 중요한 치료 옵션으로 각광받고 있는 면역 항암제의 경우, 담관암에서는 반응성을 보이는 경우가 매우 드문데, 치료에 반응하지 않는 저항성과 연관된 유전적 변화를 발굴하여, 이를 바탕으로 어떠한 환자에게 면역 항암제가 효과적으로 쓰일 수 있을지를 제시할 수 있었습니다.

개인적으로는 연구를 진행하면서 Somatic mutation panel을 경험하며, NGS 분석에 더 많은 내공을 쌓을 수 있는 좋은 기회가 되었던 것 같습니다. 이번 연구 결과가 많은 담관암 환자들이 최적의 치료를 받을 수 있는 치료 전략을 수립하는데 기여할 수 있기를 바랍니다.

[BRIC 관련 인터뷰] https://www.ibric.org/myboard/read.php?Board=tr_interview&id=245031

[관련 기사 보기]

Genomics of Drug Sensitivity in Cancer (GDSC): 항암제에 대한 암세포주 반응 Database

종양학 (Oncology)에서의 정밀 의료암세포의 돌연변이 프로필 (Mutational Profile)에 대한 정보를 얻고, 이를 바탕으로 항암제 또는 기타 약물의 효과를 예측해서, 환자에게 최적의 치료 효과를 낼 수 있는 치료를 하는 것이 목적입니다. 하지만, 종양 세포가 가지고 있는 복잡하고 다양한 돌연변이로 인해서, 특정 바이오 마커를 이용하여 실제 임상 현장에서 약물의 치료 효과를 예측하고 활용하는데에는 많은 한계가 존재합니다. 특히, 이를 위해서는 실제로 약물의 효과를 예측하는 효과적인 바이오마커가 발굴되어야 하는데, 이러한 작업은 다양한 변수들로 인해서 쉽지가 않습니다. 오늘 포스팅할 내용은 이러한 노력의 연장선에서,  약  1000여개의 확립된 인간 암세포주들에 대해 500여개의 항암제로 처리하여 각각의 세포를 죽일 수 있는 농도 (IC50 values, 50%의 세포가 죽는 농도)를 스크리닝하고, 각각의 세포주가 가지고 있는 돌연변이 프로필에 대한 정보를 제공하고 있는 Database인 Genomics of Drug Sensitivity in Cancer (https://www.cancerrxgene.org/)에 대해서 소개하고자 합니다. 이러한 대규모 스크리닝과 통계적 접근을 통해서, 어떠한 돌연변이가 어떠한 약물에 효과가 있는지 또는 저항성을 보이는지에 대한 분석이 가능하고, 궁극적으로 약물 효과를 예측하는 바이오 마커를 찾아내는게 가능해지게 됩니다.

title

overview
GDSC Website (https://www.cancerrxgene.org/)에서는 다양한 암종의 Pathway를 타겟으로 하는 약물에 대한 암세포주의 스크리닝 결과를 제공하고 있습니다.

위의 사이트에 들어가면, 다양한 세포주 정보, 돌연변이 정보, 그리고 약물 스크리닝 결과를 항목별로 조회할 수 있으면, 해당 데이터도 다운로드가 가능합니다.

kras

위의 그림은 KRAS 돌연변이를 가지고 있는 세포주들에 대해서 통계적으로 유의미하게 효과가 있거나, 저항성을 나타내는 약물에 대한 Volcano plot을 보여주고 있습니다. 이러한 세포주 결과를 통해서, KRAS 돌연변이 암세포에 대해서는 효과를 나타내는 약물 (위 그림의 초록색)을 타겟 치료의 후보로 생각해 볼 수 있습니다.

scatter

또한 비슷하게, 개별 약물에 대해서 조회를 하면, 세포주 중에서 해당 돌연변이를 가지고 있는 세포주와 가지고 있지 않은 세포주의 반응을 통계적으로 분석하여 Scatter Plot으로 제공해주고 있기도 합니다. 위의 그림은 Ibrutinib에 대해서 KRAS 돌연변이를 가지고 있는 세포들이 더 높은 IC50를 가져서, 저항성이 높다는 것을 보여주고 있습니다.

현재 위와 같은 시도는 인간 유래의 확립된 세포주 (Human Cancer Cell Lines)들에 대해서 스크리닝이 진행되고 있습니다.  추후에는 궁극적으로는 환자 개개인의 암 세포 또는 종양 오가노이드 (Organoid)를 이용하여 비슷한 접근을 한 후에, 치료 효과를 판정하고, 이를 바탕으로 치료제를 선택하는 날이 올 것으로 기대되고 있습니다. 다만, 위의 방법은 약물에 의해 세포를 직접적으로 죽이는 효과이기 때문에 면역항암제와 같이 환자 체내에서 일어나는 면역 반응을 이용하는 치료제에 대해서는 효과를 보기 어렵다는 단점이 있습니다. 위의 GDSC 프로젝트에 대해서자세히 나와있는 논문들을 Reference에 남기며, 이번 포스팅은 마무리하도록 하겠습니다.

 

관련 포스팅 보기>

DNA 손상 복구 기전과 타겟 치료 항암제

[실험실 노트] Organoid의 기본 개념과 활용

면역 항암제, Immune checkpoint inhibitor의 원리 및 종류

동반 진단, Companion diagnostics란 무엇인가?

 


[References]

Yang, Wanjuan, et al. “Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.” Nucleic acids research 41.D1 (2012): D955-D961.

Garnett, Mathew J., et al. “Systematic identification of genomic markers of drug sensitivity in cancer cells.” Nature 483.7391 (2012): 570-575.

Iorio, Francesco, et al. “A landscape of pharmacogenomic interactions in cancer.” Cell 166.3 (2016): 740-754.

DNA 손상 복구 기전과 타겟 치료 항암제

지난번 포스팅에서는 de novo mutation의 발생과 의의에 대해서 정리하였습니다. 관련 연구를 진행하다보니, 조금 더 근본적으로 de novo mutation을 발생시키는 DNA의 손상과 복구 기전에 대한 깊은 이해가 필요함을 느꼈습니다. (공부는 끝이 없습니다.) 사실 DNA 복구 기전의 문제는 많은 질환과 관련이 있는데, 대표적으로 암은 이러한 DNA 복구에 문제가 있는 것으로 잘 알려진 질환입니다. 그래서 DNA 손상과 복구에 대한 대부분의 연구는 암을 중심으로 이루어져 왔습니다. 그렇지만 암 이외에도 많은 유전 질환 또한 DNA 복구 문제와 연관성이 보고되고 있습니다. 그래서 이번 포스팅은 DNA가 손상되었을 때 이를 복구하는 여러가지 방법과 관련 단백을 정리하고, 암종의 맞춤 치료에 대한 의의에 대해 정리해보고자 합니다.

 

DNA 손상의 종류

DNA damage

생명체의 중요한 유전 정보를 지니고 있는 DNA는 이중 가닥으로 이루어져 있기 때문에, 손상의 종류에 따라서 복구되는 기전도 차이가 나게 됩니다. DNA의 손상은 DNA 복제 과정의 에러와 같은 세포의 내인적 요인과 외부의 환경적 요인에 노출되면서 발생하는 다양한 손상 (Environmental mutagen) 등이 복합적으로 작용하여 일어나게 됩니다. 이때, 가닥의 한쪽만 손상 (Single-strand break; SSB)이 이루어진 경우는 상보적인 반대쪽 가닥의 정보를 이용하여 복구를 할 수 있지만, 양쪽 가닥이 모두 손상 (Double-strand break; DSB)된 경우는 인접한 상동 염색체의 정보를 이용하여야 복구가 가능해집니다. 이외에도 이전에 정리했던 Chromothripsis나 Kataegis와 같은 event가 발생하면, 훨씬 더 복잡한 패턴의 대규모의 손상이 발생할 수 있습니다.

 

DNA 복구 기전과 관련된 주요 분자

아래 그림은 DNA의 손상을 복구하는 여러 기전과 관련 분자들을 정리하여 보여주고 있습니다. 암 유전학에서 재미있는 것은 이러한 손상 복구 기전과 연관된 분자들 중 어떠한 것에 문제가 있는가에 따라서 질환의 경과나 치료제의 반응 정도 등에 차이가 난다는 점입니다. 사실 암과 관련된 맞춤 치료 및 표적 치료제 (Targeted agent)도 이러한 개념에 근거하여, 관련 암종의 분자 프로파일 (molecular profile)을 작성하고 최적의 치료 옵션을 찾는데에 있습니다.

  • Base excision repair: DNA의 산화적 손상 (ROS)을 복구하는 가장 기본적인 기전으로, 손상된 염기를 잘라내고 다시 복구합니다.
  • Nucleotide excision repair (NER): 여러 개의 base로 이루어진 조금 더 큰 nucleotide 단위의 손상을 복구하는 기전으로, UV, Tobacco, ROS, Radiation과 같은 다양한 환경적인 mutagen에 대응하는 복구 기전입니다.
  • Mismatch mediated repair (MMR): DNA 복제 과정에서 필연적으로 발생하는 replication error에 대한 복구 기전으로, 잘못 복제된 DNA를 교정해줍니다. 이러한 기전에 문제가 있는 경우, Lynch syndrome 또는 HNPCC (Hereditary nonpolyposis colorectal cancer)라고 하는 가족성 암 증후군을 일으키는 것으로 잘 알려져 있습니다.
  • DNA double-strand break repair: 이중 가닥 손상에 대해서는 다양한 복구 기전이 존재하는데, 크게 NHEJ (Non-homologous end joining)HDR (Homology directed repair) 기전이 존재합니다. 간단히 정리하면 NHEJ는 손상된 부분을 그냥 연결해주는 방식이고, 그렇기 때문에 INDEL이 발생하게 됩니다. 유전자 가위인 CRISPR-Cas9 이 이러한 방식으로 INDEL을 유도하게 됩니다. 반대로, HDR은 인접한 상동 염색체의 동일 부분의 유전 정보를 활용하여 복구하는 기전으로, BRCA1/2 또는 FANC family가 주요한 역할을 하는데, 안젤리나 졸리의 예방적 유방 절제술로 유명해진 유전성 유방 난소암 증후군 (Hereditary Breast Ovarian Cancer; HBOC)이나 판코니 빈혈 (Fanconi Anemia)이 이러한 분자의 문제로 발생하는 것이 잘 알려져 있습니다.

DNA repair

DNA repair_2

 

DNA 복구 기전 문제와 암종의 타겟 맞춤 치료

DNA 손상을 제대로 복구하지 못하여 발생한 암은 문제가 있는 기전에 따라서, 타겟 치료제에 대한 반응성도 달라지게 됩니다. 아래 그림은 이러한 기전과 타겟 치료제의 관계를 보여주고 있습니다. 가장 대표적으로 Homolgy directed repair (HDR)에 문제가 있어서 발생한 암종들은 Platinum 계열의 항암제PARP inhibitor에 잘 듣는 것으로 알려져 있고, Mismatch repair (MMR)에 문제가 있는 암종들은 면역 항암제 (Immune Checkpoint Inhibitor)에 대한 반응성이 좋은 것으로 보고 되고 있습니다. 이러한 분자 기전과 연관된 분자에 따라서, 환자의 반응성을 예측하고 치료 옵션을 수립하는 것이 환자별 맞춤 치료와 정밀 의료의 방향성으로 제시되고 있습니다.

F1.large

 

관련 포스팅 보기>

[유전학 중요개념 정리] De novo mutation의 발생 기전과 질병 발생학적 의의

[유전학 중요개념 정리] Complex DNA rearrangement: Chromothripsis, Chromoanasynthesis, and Chromoplexy

닥터 프리즈너 속 헌팅턴병의 유전학: 삼염기 반복 질환과 Anticipation

면역 항암제, Immune checkpoint inhibitor의 원리 및 종류

 

[References]

Jalal, Shadia, Jennifer N. Earley, and John J. Turchi. “DNA repair: from genome maintenance to biomarker and therapeutic target.” Clinical cancer research 17.22 (2011): 6973-6984.

Morgan, Meredith A., and Theodore S. Lawrence. “Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways.” Clinical Cancer Research 21.13 (2015): 2898-2904.

Corcoran, Niall M., et al. “Molecular pathways: Targeting DNA repair pathway defects enriched in metastasis.” Clinical Cancer Research 22.13 (2016): 3132-3137.

약물유전체 Annotation tool: PharmCAT

제가 있는 연구실의 주요 연구 테마는 약물 유전학인데, 저는 어쩌다 보니 운이 좋게도 암종 (Cancer), 선천성 희귀 유전 질환 (Rare Disease), 약물유전체 (Pharmacogenomics) 시퀀싱 데이터를 모두 분석할 기회가 있었습니다. 사실 이 3가지 분야는 유전체 기술을 통한 정밀 의료 실현을 위해 연구자들이 집중하고 있는 주요 카테고리인데, 공통점도 있지만 성격이 많이 다릅니다. 특히, Cancer, Rare Disease와 구분되는 Pharmacogenomics의 가장 큰 차이는 연구 집단이 환자가 아닌 정상 일반인이라는데 있습니다. 이 차이점은 Variant interpretation 접근 과정에서도 큰 차이를 보이는데, 1) 일반적으로 환자의 원인 변이를 찾을 때, Allele Frequency에 의한 variant filtering을 통해 rare variant를 찾는 것 뿐 아니라, 인구 집단에 따른 Common variant도 무시하기가 어렵고,  2) 약물 대사와 관련된 유전자의 발현은 다양한 요소에 영향을 받기 때문에, 한 두개의 유전형으로 기능을 평가한다는 것이 거의 불가능합니다.

이러한 유전체 정보를 통합적으로 활용하기 위해서, 다양한 변이에 기반한 약물 유전형을 annotation 하기 위한 도구가 개발되고 있는데, 이름하여 PharmCAT (Clinical Annotation Tool) 이라고 부르게 되었습니다. 일반적으로 시퀀싱 정보는 이전에 언급한 Annovar를 이용하여, Annotation을 진행하지만, 약물 유전학적 접근에서는 annovar의 annotation 정보로는 임상적인 활용까지 부족한 부분이 많은 것이 사실입니다. 그래서 이번 포스팅에서는 다른 유전체 정보와 구분되는 약물 유전체 정보의 특성과 PharmCAT의 개발 상황에 대해서 정리해보고자 합니다.

관련 포스팅 보기>

약물유전체학 연구 네트워크: PGRN

CPIC Guideline: 유전체 정보를 활용한 약물 처방에 관한 임상 근거 지침

약물 유전체 연구가 어려운 이유

Annovar: Population frequency, in-silico prediction tool 및 기타 database 활용

Haplotype 의미와 Linkage Disequilibrium (LD), Haplotype Phasing 검사 방법

 

다양한 약물 유전자의 변이와 조합, Haplotype status

CYP2C19

발생 과정에서 핵심적인 역할을 하는 유전자는 상대적으로 변이가 적습니다. 그에 비해 약물 유전자는 주변 환경과 식이 등의 영향을 받아서, 인종과 개별에 따라서 매우 다양한 변이를 가지고 있습니다. 대표적인 예로, 96%의 사람들이 중요한 약물 유전자들인 CPIC-Level A 유전자들에 최소 1개 이상의 변이를 가진 것으로 보고되고 있습니다. 이러한 변이의 수 뿐만 아니라, 배수체 (Haplotype, Diploid n = 2) 상태에 따라, 변이가 cis- 또는 trans- 위치인지에 따라서 다양한 조합이 존재하게 됩니다. 위의 그림은 이러한 변이의 종류와 조합에 따른 CYP2C19 유전자의 약물 유전형 상태를 나타내고 있습니다. 단순히 시퀀싱 데이터를 통해서, 개인의 약물 유전형을 추정하는 것이 쉽지 않은 이유입니다. 더불어 약물 유전자들의 경우에는 Star nomenclature를 통해서, 유전형을 표시하는데 시퀀싱 데이터에서 바로 Star allele (ex> *1A, *2B, *3 등등)로 읽어 들이기가 쉽지 않습니다.

약물 유전자 변이와 유전형에 대한 Star nomenclature 정보 보기>

https://www.pharmvar.org/

 

PharmCAT Project

PharmCAT

PharmCAT은 위와 같은 어려움을 극복하여, 시퀀싱 데이터를 통해 개인별 약물 유전형을 추정하고, 최종적으로는 그에 맞는 약물 처방 가이드 라인을 제공하여, 정밀 의료를 현실화 하려고 하는 프로젝트입니다. 일반적인 Annotation 과정 외에도 Haplotype 정보를 통합한 약물 유전형 추정 및, 이를 통합한 약물 처방 가이드 라인 제공이 합쳐진 Pipeline을 구축하는 것이 목표입니다. 현재는 아직 개발 단계의 테스트 버젼만 제공하고 있으나, 곧 어느 정도의 파이프 라인이 구축되지 않을까 생각됩니다. 다만, 아직까지는 약물 유전형에 따른 충분한 임상 정보와 가이드 라인이 구축되어 있지 않아서, 약물 유전체 연구가 더 활발하게 이루어져야 진정한 의미의 정밀 의료가 실현 될 수 있지 않을까 생각됩니다.

 


[References]

Sangkuhl, Katrin, et al. “Pharmacogenomics Clinical Annotation Tool (Pharm CAT).” Clinical Pharmacology & Therapeutics (2019).

Sangkuhl, Katrin, et al. “Pharmacogenomics Clinical Annotation Tool (Pharm CAT).” Clinical Pharmacology & Therapeutics 107.1 (2020): 203-210.

Kalman, Lisa V., et al. “Pharmacogenetic allele nomenclature: international workgroup recommendations for test result reporting.” Clinical Pharmacology & Therapeutics 99.2 (2016): 172-185.


PharmCAT Web-sources:

http://pharmcat.org/

https://www.pharmgkb.org/page/pharmcat

https://github.com/PharmGKB/PharmCAT

영국의 정밀 의료 사례: UK biobank, 100,000 Genome Project, NHS England 까지

정밀 의료 (Precision Medicine)와 관련하여 최근에 매우 감명을 받은 영국(UK)의 사례를 보면서, 전반적인 연구 동향 및 정밀 의료가 실제 의료 시장 변화에 미치는 동향에 관한 글을 남겨봅니다. 영국은 확실히 사회 복지 체계가 잘 잡혀서 의료 분야에서도 많은 변화를 주도하고 있으며, 체계도 매우 구체적이고 잘 잡혀있습니다.

 

UK BioBank

uk biobank

이러한 특성은 가장 선도적으로 영국인들의 유전체 정보를 구축하는 UK Biobank project에도 잘 나타나있으며, UK Biobank를 활용하여 나온 무수한 많은 연구와 논문들, 그리고 이를 쫓는 많은 개별 국가들의 정책들이 이를 입증합니다. 우리 나라에서도 한국인 유전체 은행을 구축해야 한다는 목소리도 동일한 선상에 위치합니다.

UK Biobank국가 주도 단위의 유전체 은행으로 다양한 질환과 형질을 대표하는 사람들의 검체를 수집하고, 임상 정보를 정리하고, 수집한 검체를 통해서 유전체 정보를 데이터 베이스로 구축하고 있습니다. 국가 주도 단위로 매우 큰 인구 집단을 대변하기 때문에 그 파급력은 매우 크다고 할 수 있습니다.

 

100,000 Genomes Project

genomics england

UK Biobank와 비슷하게 진행되고 있는 다른 프로젝트는 우리 나라의 보건 복지부에 해당하는 영국의 Department of Health & Social Care. 산하의 Genomics England에서 진행하고 있는 100,000 Genomes Project 입니다. 희귀질환과 암 질환특정 질환 환자들 10만명의 게놈을 전장 유전체 시퀀싱(Whole Genome Sequencing)하여, 전체 유전체 정보를 수집하는 것을 목표로 하는 프로젝트로, 연구자의 입장에서도 매우 파급력이 크지만, 다양한 질환의 환자들과 일반인들에게도 미칠 파급력이 엄청 날 것으로 예상됩니다. 해당 프로젝트는 2018년 12월 10만번째 참여자의 유전체를 시퀀싱하면서 목표에 도달했고, 이 결과를 바탕으로 앞으로 어떠한 결과가 나올지 매우 기대가 됩니다.

The UK has sequenced 100,000 whole genomes in the NHS

 

NHS England

nhs england_00000

마지막으로 위와 같은 유전체 프로젝트의 결과를 활용하고, 실제로 의료를 변화 시키기 위해 장기적인 관점에서 영국은 NHS England를 출범시켜서 정밀 의료를 바탕으로 한 10년 이후의 의료 서비스에 대해서 계획하고 있습니다. 재미있는 점은 많은 일반 국민들이 실제로 관심을 가지고, 직접 프로젝트에 참여하며, 이를 통해서 공동체 전체의 발전을 이끌어내는 각각의 톱니바퀴가 잘 물려서 돌아가고 있다는 점입니다.

특히, 이러한 큰 테마 안에 속해 있는 각각의 세부 과제들의 짜임새와 디테일들을 보면, 의료인으로서 소름끼칠 정도로 정교하고 놀랍습니다. 그 안에서 얼마나 많은 전문가들이 노력하여 상의하고 정책을 수립했을지, 하나의 문서를 작성하는데도 얼마나 많은 고민이 있었을지가 여실히 느껴집니다.

우리나라의 보건 복지부에서 의료 정책을 기획하시는 분들도 이러한 점을 꼭 염두해두고 장기적인 계획은 수립했으면 하는 바람으로 글을 마칩니다.

 

임상 빅데이터와 딥러닝(Deep Learning)을 활용한 연구와 고려사항

2년전부터 임상 빅데이터딥러닝 (Deep Learning) 기술을 접목하여 준비했던 논문이 있는데, 최근에 미국 심장학회 (American Heart Association)에서 발간하는 Stroke 지에 게제 승인이 나서, 관련된 내용을 정리하는 포스팅을 남길까 합니다.

의료 정보 빅데이터에 기계 학습 (Machine Learning) 기술을 활용하여 발표 하였던 저희의 첫번째 논문에서는 800명 정도의 환자 데이터를 이용하였는데, 당시 논문은 DIC 진단에 대해 기존 방법에 비해 진단 정확도를 높일 수는 있었지만, 딥러닝 기술이 다른 머신 러닝 기법 (Logistic regression, SVM, Random Forest, ANN)과 비교해서 우수한 성능을 보이지 못했습니다. 해당 연구를 통해, 다음과 같은 한계점을 느꼈습니다.

  1. 머신 러닝 기법이 통계적 기법보다 더 강한 성능을 보이기 위해서는 충분한 수와 양질의 데이터가 필요하다.
  2. 그러나 임상 메타데이터는 수는 많지만 매우 지저분 (messy)하다. (전처리 과정에 매우 큰 노력이 들어가야 한다.)
  3. 딥러닝의 강점을 충분히 활용하기 위해서는 매우 큰 양질의 코호트 데이터가 필요하다.

관련 포스팅 및 논문 보기>

의학 연구를 위한 기계학습 1: Supervised learning의 연구 설계 구조

의료 정보 빅데이터를 활용한 연구와 고려 사항

첫번째 머신 러닝 논문>> https://www.ncbi.nlm.nih.gov/pubmed/29718941

위와 같은 경험을 토대로 양질의 코호트를 찾던 중, 매우 운이 좋게도 신경과에 있는 친구와 의견을 나눌 수 있었고, 다행히 10년 정도 매우 잘 정리된 뇌졸중 환자 코호트를 활용할 수 있었습니다. 아래의 이를 토대로, 이번에 발표한 논문의 내용입니다.

 

Machine Learning–Based Model for Prediction of Outcomes in Acute Stroke

 

I. 논문의 배경 및 내용 소개

뇌졸중 (Stroke)은 고혈압, 흡연, 비만, 고콜레스테롤 등의 다양한 질환에 의해서, 뇌혈관의 혈류가 원활하지 않게 되면서 뇌세포의 사멸이 발생하는 급성 질환입니다. 다만, 빠른 처치 (약물 투여 또는 수술)를 통해서, 뇌혈류를 정상화 시키게 되면 정상적으로 회복 시키는 것이 가능하고, 그렇지 못할 경우에는 영구적인 뇌손상이 남게 됩니다.

저희는 응급실에 뇌졸중이 발생하여 내원한 환자 2,604명의 다양한 임상 정보를 토대로, 3개월 후 시점에서 환자의 예후가 좋을지 나쁠지를 예측하는 머신 러닝 모델을 개발하였습니다. 그동안 임상적으로 예후 예측에 널리 쓰이던 ASTRAL score 는 6가지 임상 정보를 이용하여, 환자의 예후를 예측했는데 저희는 응급실 도착 후에 환자로 부터 얻은 38가지 임상 정보에 딥러닝을 활용하여 환자의 예후를 예측했고, 5% 정도 더 정확하게 환자의 예후를 예측할 수 있었습니다. 재미있는 점은 아무리 딥러닝 기술을 이용하더라도, ASTRAL에서 사용하는 6개의 임상 정보만을 이용하는 경우에는 두 모델 (ASTRAL score 및 딥러닝) 간의 차이가 없었다는 점입니다.

 

II. 논문의 의의 및 시사점

6개의 임상 정보만을 활용하여, 딥러닝을 시켰을 때의 성능이 ASTRAL score와 차이가 없었다는 점은 딥러닝 기술이라고 해서 없는 정보를 더 잘 만들어 냄을 의미하지 않습니다. 즉, 환자의 예후에 영향을 미치는 다양한 요인을 더 세밀하게 수집을 해야만 더 정확한 예후를 예측할 수 있음을 의미합니다. 다른 말로 하면, 환자의 다양한 임상 정보를 매우 정확하고 다양한 측면에서 세밀하게 데이터를 얻어야만, 진정한 의미의 정밀 의료 (Precision Medicine)의 실현이 가능하다는 뜻이 됩니다.

 

AI(Artificial Intelligence) concept, 3D rendering, abstract image visual

II. 딥러닝 기술을 적용한 의학 연구시 고려할 사항

딥러닝 기술은 심층 신경망 (Deep neural network)을 형성함으로써, 기존 통계적 기법에서는 무시되는 데이터들 간의 매우 사소한 인과 관계도 활용할 수 있는 장점이 있습니다. 이러한 특징은 정밀 의료라는 프레임에 매우 적합한 점이라고 할 수 있습니다. 그러나, 이러한 네트워크를 제대로 형성 시키기 위해서는 충분한 수의 양질의 데이터가 필수  (Garbage In, Garbage Out)입니다. 즉, 사금을 채취 과정과 동일하게 아무리 모래 (빅데이터)를 많이 퍼와서, 딥러닝을 시킨다고 의미 있는 결과가 얻어지지 않습니다. 그러나, 딥러닝 기술을 모방한 많은 연구들은 이러한 점을 충분히 고려하지 않거나, 한계점을 지닌채 수행되었습니다.

또한 딥러닝이 충분한 성능을 발휘하기 위해서는 적어도 10,000개 이상의 데이터가 필요한 것으로 알려져 있습니다. 다행히 저희의 이번 연구에서는 10년간 매우 신경 써서 모은 4,000명 이상의 데이터를 이용할 수 있었고, 그럼에도 불구하고 초창기 5~6년의 데이터는 상대적으로 데이터 퀄리티가 떨어져서, 연구에서 제외할 수 밖에 없었습니다. 결국, 최근 3~4년 간 신경써서 모은 38개 임상 정보의 2,604명의 환자의 데이터 (38 x 2,604) 만을 이용하게 되었습니다. 그럼에도 딥러닝 기술과 ASTRAL score 간의 차이는 5% 정도 밖에 되지 않았습니다. 추후에 딥러닝의 장점을 더 잘 살리기 위해서는, 더 크고 정밀한 수의 데이터가 필요한 이유입니다. 그러나 이는 단일 기관에서는 거의 불가능하고, 따라서 국가 주도 또는 콘소시엄 형식의 연구가 필요한 이유가 됩니다.

 

[References]

Heo J, Yoon JG, et al., “Machine Learning–Based Model for Prediction of Outcomes in Acute Stroke”. Stroke: 2019

동반 진단, Companion diagnostics란 무엇인가?

오늘은 정밀 의료 (Precision Medicine)약물 유전학 (Pharamacogenetics) 분야에서 공통적으로 중요한 개념인 ‘동반 진단’ (Companion Diagnostics)에 대해 정리하는 포스팅을 남길까 합니다.  저는 개인적으로 우리 나라의 ‘동반 진단’이라는 어휘를 별로 좋아하지 않습니다. 어휘는 들었을 때 이해하기 쉽고 개념이 바로 연상되어야 하는데, 동반 진단이라는 단어는 이해가 어렵기 때문이죠 (영어식 표기를 단순히 우리말로 번역한 결과).

그러면 ‘Companion diagnostics’ (이하 CD)를 좀 더 쉽게 이해하기 위해서, 어떤 의미의 단어인지 부터 살펴보겠습니다.

‘Companion’: 흔히 동행, 동반자, 친구 등으로 번역되는데 쉽게 말해서 ‘졸졸 따라 다니는’ 의 의미 입니다. / + ‘Diagnostics’ : ‘진단 방법’을 의미 합니다.

즉, Companion diagnostics 는 어떤 약물 치료 또는 처치를 하기 위해, 수반되어 시행해야 하는 (권장되는) 진단 방법 또는 검사를 일컫게 됩니다. 더 쉽게 말하면, ‘너 이 약이나 치료 쓰려면, 이 검사하고 나서 써.’ 입니다. (무슨 이런 쉬운 말을 이렇게 어렵게 이름 붙인답니까..) 더 자세한 정의 및 의미는 아래에서 살펴 보겠습니다.

약물 유전학 관련 포스팅 보기 -> 약물 유전학은 왜 정밀의료에서 중요한가?

 

Companion Diagnostics가 나타나게 된 배경

사실 CD의 개념은 오래 전부터 있었습니다. 대부분의 CD는 종약학 (Oncology) 분야의 항암제 치료와 밀접한 관련이 있습니다. 1970년 대 진행성 유방암 환자에서 ER (Estrogen Receptor) status에 따라 항암제인 Tamoxifen 의 치료 성적이 달라진다는 사실을 알게 되었고, 1980년 대에는 HER2 유전자의 변이 여부에 따라 유방암의 예후가 달라진다는 사실을 알게되면서, HER2에 변이를 가진 환자에서만 특이적으로 치료 효과를 갖는 HER2 antagonist인 Trastuzumab (일명 Herceptin)이 개발되었습니다. 이렇듯 어떠한 약물 (항암제)의 치료 효과 또는 반응이 떠한 유전자의 변이 여부에 따라 다르게 나타나게되면서, 치료 대상자의 선정도 변이 여부에 따라 선택적으로 이루어 지게 된 것입니다. 이러한 개념이 점차 확대되면서, 약물의 개발 과정에서 부터 CD가 깊게 관여하게 되었고, 최근 개발된 많은 항암제에는 이러한 CD marker가 추가되었습니다. 대표적으로, 최근 유명한 면역 항암제인 PD-1 inhibitor인 Pembrolizumab, Nivolumab 등이 여기에 해당합니다.

CD1
[종양학 분야의 항암제 개발과 Companion Diagnostic 마커] 최근 많은 항암제가 유전자의 돌연변이를 타겟으로 하면서, 항암제 사용을 위한 동반진단 마커가 함께 개발되고 있습니다.

 

Companion Diagnostics의 정의

실제 의료 현장에서 위에서 언급한 신약들을 정착시킴에 있어 미국 FDA의 승인이 필요하게 되었습니다. 따라서 동시에 CD에 해당하는 진단 검사 방법에 대한 의료 기기 및 검사에 대한 승인을 받기 위해서 CD가 정확히 무엇이다 라는 정의가 필요하게 되었습니다. 이에 따라 현재 널리 쓰이는 CD의 정의는 이 때 FDA에서 정의한 내용을 쓰고 있습니다. FDA에 따르면, Companion Diagnostics란 다음의 내용을 포함하는 체외 진단 검사를 일컫습니다.

  1. To identify patients who are most likely to benefit from the therapeutic product;
  2. To identify patients likely to be at increased risk of serious adverse reactions as a
    result of treatment with the therapeutic product;
  3. To monitor response to treatment with the therapeutic product for the purpose of adjusting treatment
  4. To identify patients in the population for whom the therapeutic product has been
    adequately studied, and found safe and effective

정리하면, 약물을 안전하고 효과적으로 사용할 수 있는 대상자를 선정하고, 치료를 모니터링할 수 있도록 도움을 주는 체외 진단 검사 방법Companion Diagnostics 인 셈입니다.

CD3
[Companion Diagnostics의 적응 약물, 관련 질환 및  해당 바이오마커]
 

 

Companion Diagnostics의 임상 활용 및 전망

마지막으로 CD의 임상 활용 및 전망에 대해 살펴 보고 포스팅을 마치고자 합니다. 현재 CD의 개념은 대부분 항암제에 국한된 것이 사실입니다. 많은 연구를 통해 암의 발생 메커니즘 (carcinogenesis)를 이해하면서 이에 근거하여 치료제를 개발하다보니 항암제-유전자 변이 마커 쌍이 성공적으로 정립되고 있기 때문입니다. 그러나 이것은 좁은 의미의 CD이며, 더 넓게는 다양한 의료 현장에서 치료의 선택에 활용이 가능합니다. 또한 앞으로 개발되는 많은 신약들에는 이러한 CD의 개념이 더 폭넓게 적용 및 요구될 가능성이 높습니다. (Drug-diagnostic co-development)

신약 개발 과정 관련 포스팅 보기 ->  신약 개발과 임상 시험, 그리고 시판 후 조사

CD2
[Drug-diagnostic co-development] 최근 Companion Diagnostics는 신약 개발 과정에서부터 함께 고려되어야 하는 중요한 부분이 되었습니다.
더불어, 우리나라에서도 2015년에 식약처에서 체외동반진단기기에 대한 가이드라인을 정립하였습니다. (우리 나라의 현황 및 실무와 관련된 내용은 다음 포스팅에서 다루도록 하겠습니다.) 유전자 검사법이 점점 발전하게 되면서, 앞으로는 더 다양한 치료 효과를 예측하고 모니터할 수 있는 많은 마커들이 발견될 것이며, 이를 통해 조금 더 정밀 의료의 실현에 가까워 질 수 있을 것으로 기대되고 있습니다.  많은 CD 마커들이 발굴되고, 실제로 환자들이 도움을 받을 수 있기를 희망합니다.

 

[참고 문헌]

Jørgensen, Jan Trøst, and Maria Hersom. “Companion diagnostics—a tool to improve pharmacotherapy.” Annals of translational medicine 4.24 (2016).

CPIC Guideline: 유전체 정보를 활용한 약물 처방에 관한 임상 근거 지침

지난 포스팅에서 약물 유전학이 왜 정밀 의료의 실현에 중요한지에 대해서 간단하게 포스팅했습니다. 오늘은 조금 더 구체적으로 약물 유전체 정보에 근거하여 실제 임상 진료 시 약물의 처방에 대한 지침을 제공하고 있는 CPIC (Clinical Pharmacogenetic Implementation Consortium) Guideline에 대해서 구체적으로 소개해 보고자 합니다.

지난 포스팅 보기 -> 약물 유전학은 왜 정밀의료에서 중요한가?

CPIC 홈페이지 방문하기 -> CPIC 홈페이지

CPIC 가이드 라인 및 중요도 구분

CPIC 가이드 라인은 약물과 관련 유전자 쌍 (Gene-Drug pair)에 대한 다양한 연구 결과들을 바탕으로, 실제 임상 적용에 대한 중요도를 Level로 구분하고 있습니다.  아래는 이러한 중요도를 평가하는 기준을 나타내주고 있습니다.

  • Is there prescribing actionability?
  • What is the severity of the clinical consequences (adverse effects, lack of response) if genetics are not used to inform prescribing?
  • Is the gene already subject to other CPIC guidelines?
  • Is there an available genetic test for that gene?
  • How commonly used are the affected drugs?
  • How common are the high-risk genetic variants?
  • Is there mention of genetic testing in drug labelling?
  • Are there pharmacogenetically-based prescribing recommendations from professional organizations or others?

즉, 실제 처방에 활용할 수 있는 용이성과 그 임상적 중요도를 바탕으로 하여, 아래 표와 같이 4가지 레벨 A, B, C, D로 구분하고 있습니다. CPIC 홈페이지는 작성일자 기준 352개의 약물-유전자 쌍에 대한 CPIC level을 제공하고 있는데, 이 중에서도 가장 중요도가 높은 A로 분류된 약물-유전자 쌍에 대해서는 실제 임상 가이드 라인이 출판되거나, 진행 되는 중입니다. 또한, CPIC 에서는 Level A 및 B로 구분된 약물-유전자 쌍에 대해서는 실제 유전형에 따라 다르게 약물을 처방하는 것이 효과적이라고 구분하고 있습니다.

cpic level
CPIC 가이드 라인은 약물과 관련 유전자 쌍에 대한 임상적 활용의 중요도에 따라 4가지 기준으로 구분하고, 중요도가 높은 A 및 B에 대해서는 실제 임상 진료 지침을 수립하고 있습니다.

CPIC 가이드 라인의 실제 적용 예

다음으로 CPIC 가이드 라인의 실제적인 예를 살펴 보도록 하겠습니다. 면역 억제제로 흔하게 사용하고 있는 Tacrolimus와 CYP3A5 유전자에 대한 지침을 살펴보겠습니다. CPIC은 우선적으로 CYP3A5 유전자에 대한 유전형을 검사하여, 실제 약물 대사 표현형을 3개의 단계로 구분하고, 각 표현형에 따라 서로 다른 약물 농도를 처방할 것을 권장하고 있습니다.

cpic level_00000
CYP3A5 유전형에 따른 표현형을 구분한 표. CYP3A5 유전형에 따라 약물을 얼마나 잘 대사하는지에 따라 표현형을 Extensive / Intermediate / Poor Metabolizer와 같이 구분합니다.

cpic level_00001
위의 CYP3A5 유전형에 따라 구분된 표현형에 따라, Extensive/Intermediate 그룹과 Poor Metabolizer 그룹에 속하는 환자의 권장 처방 용량이 달라집니다.

 

CPIC 가이드 라인의 한계 및 나아가야 할 방향

마지막으로 CPIC 가이드 라인의 한계 및 앞으로 정밀 의료의 측면에서 보완해야할 내용을 짚어보고 포스팅을 마치고자 합니다. 위의 실제 예를 살펴보면, 임상 지침이 상당히 간단(?)한 것을 볼 수 있습니다. 사실 이는 우리가 흔히 꿈꾸고 있는 정밀 의료의 모습과는 상당히 멀다는 것을 알 수 있습니다. 사실 지금도 이 분야에서 많은 연구자들이 노력하고 있지만, 저런 간단한 유전형에 따른 약물 처방 지침 조차도 현재까지는 19개의 약물 유전자 쌍에 대해서만 출판이 된 상태입니다. 즉 아직도 많은 약물 반응과 유전 정보와의 관계가 불명확하거나, 근거가 부족한 상태입니다. 또한 이러한 임상 지침은 흔한 변이에 근거하여 축적된 관찰에 근거하기 때문에, 매우 드문 변이 (Rare variant)를 갖는 환자에 대해서는 적절한 정보를 제공해 주지 못합니다. 또한 표현형의 구분이 3~4개의 카테고리로 매운 단순하기 때문에 같은 표현형 내에서도 여전히 많은 차이를 보이게 됩니다. 더 세밀한 구분과 관련 지침 수립이 필요한 부분입니다.

또한, 수많은 약물과 유전형과의 추가적인 연구와 덧붙여, 기존에 알려진 약물-유전형에 대한 가이드 라인도 여전히 문제가 많습니다. 위의 임상 지침은 미국을 기준으로 하고 있으나, 약물 반응은 인종별로도 차이가 크게 다르며, 따라서 위의 임상 근거 및 처방 용량이 한국인에서 그대로 적용될 것이라고는 말하기 어렵습니다. 따라서 엄밀한 의미의 정밀 의료를 위해서는 인종별 약물 반응에 대한, 각 지역별 근거도 함께 수립이 되어야 합니다. 한국인 맞춤 진료 지침이 필요한 이유입니다.

여기까지 살펴보면, 실제 유전 정보를 이용하여 약물 반응을 설명하는 것이 쉽지 않음을 깨닫게 됩니다. 이는 약물 반응이라는 형질 또는 표현형이 단순히 한 두가지 유전자의 조합으로만 쉽게 설명되지 않는 경우가 대부분이기 때문입니다. 그러나 동시에 여전히 많은 연구자들은 정밀 의료 실현을 위해 노력하고 있음을 알아야 할 것입니다.

DTC 유전자 검사의 딜레마: 과학과 산업 사이

유전자 검사법 개정

1
생명윤리 및 안전에 관한 법률 제 6장 50조 (유전자검사의 제한 등)을 보면, 의료 기관이 아니더라도 민간업체에서 질병의 예방과 관련된 유전자 검사가 가능해졌습니다.

지난번 유전체 학회 부스에 갔더니, 바이오벤처 기업에서 유전자 검사 서비스를 홍보하는 것을 보고 깜짝 놀랐습니다. 자세히 알아보니 비교적 제약이 많았던 우리 나라에서도 ‘생명윤리 및 안전에 관한 법률’이 개정되어, 민간업체에서도 영리 목적의 제한적 유전자 검사가 가능해졌다고 합니다. 민간업체에서 검사 가능한 유전자는 총 46개로 건강 관련 6가지 (비만, 콜레스테롤, 중성지방, 혈당•혈압, 카페인대사)과 미용 관련 6가지 (비타민C 대사, 피부색소침착, 피부노화, 피부탄력, 탈모, 모발굵기)등 총 12가지 항목입니다. 이렇게 민간업체에서 직접 유전자 검사를 해서, 소비자에게 바로 제공하는 것 DTC (Direct-To-Consumer)라고 하는데, 우리나라도 DTC 유전자 검사가 가능해진 법적 기반이 만들어진 것입니다.

 

2
영리목적의 유전자 검사기관에서 검사 가능한 질병 예방 목적의 유전자 46개의 리스트

 

DTC 유전자 검사 결과의 해석

문득, 업체들에서 유전자 검사를 도대체 어떻게 검사하고 시행하는지 무척이나 궁금해졌습니다. 왜냐하면, 유전형이 사람들의 형질을 설명할 수 있는 비율이 매우 제한적이고, 더구나 항목당 몇 개 안되는 유전자 수로 변이를 해석해서 건강과 미용을 해석해준다는게 넌센스이기 때문입니다. 저는 병원 진단검사의학과 검사실에서 무척이나 다양한 검사 레포트를 작성해보았지만, 저런 유전자 검사로 건강과 미용에 대한 결과 레포트를 작성하는 것이 상상이 되지 않았습니다. 그러다 우연히 한 업체의 레포트 샘플을 살펴 볼 수 있었습니다. 우선, 눈에 띄는 것은 일반인들이 최대한 이해하기 쉽도록 검사 결과지를 만든것으로 보이고, 한 두군데 중요하다고 보고된 지역의 SNP (단일 염기변이)만 spot typing 한 것으로 보입니다. 그 지역의 형질 빈도 정보는 나타내주고 있지만, 어떤 지역의 어느 위치인지 (SNP ID라던가 유전자의 염기 서열 번호 등) 전혀 나타나 있지 않아서, 중요한 유전자 정보는 의사 및 전문가와 상담하라고 하는데, 전혀 가치있는 정보를 얻을 수 없습니다. 무엇보다 유전형을 통해서 의사 처방 의약품 및 추천 건강 식품을 추천해주는 것으로 보이지만, 사실 둘 사이에는 아무런 관련도 없습니다. 유전자 검사 결과 체질량 지수가 높아질 확률이 높은 변이가 한개 검출 되었으니 다이어트에 좋은 식품을 먹어라 정도로 이해가 되지만, 체질량 지수를 결정하는 변이는 한 두개가 아니며, 많은 변이를 통해 예측을 한다고 하더라도 그것이 맞을 확률 또한 충분하지 않습니다.

inner_out_1
어느 업체의 건강 관련 DTC 유전자 검사 결과 레포트 샘플 (저는 본 업체와 아무런 이해 상충 관계도 없음을 밝힙니다.)

 

사주와 유전자 검사

인간은 본래 미래를 예측하기를 좋아하는 것 같습니다. 그래서 사주나 역학이 발달해왔는지도 모르겠습니다. 사주나 역학을 비판하는 것은 아니지만, 사주나 점술은 비과학적인 근거에 기반합니다. 그에 비해, 최근에 발달한 유전학은 실제적인 유전형에 근거하여, 형질을 예측하고 설명하고자하는 학문입니다. 따라서 유전자 검사를 통해, 질병을 예측하고 검사하는 것은 과학적 근거에 기반해야합니다. 그러나 현재 가능한 DTC 유전자 검사는 충분한 과학적 근거도, 정보도 제공해주지 못합니다. 유전자 검사 자체에 문제가 있는 것이 아니라, 그 검사 결과를 충분한 형태의 정보로 제공할 수 있는 수준이 아니라는 것이죠.

지금의 수준은 유전자 검사의 탈을 쓴 사주나 타로 카드와 크게 다를 바가 없습니다. 우리나라보다 산업계의 제약이 훨씬 적은 미국의 경우에는 수많은 바이오 벤쳐기업이 세워졌고, 몇몇 기업은 과학자들에게 엄청난 비난을 받고 있습니다. 대표적으로 유전자 검사를 통해 최적의 와인을 찾아준다고 선전하는 Vinome, 축구를 잘하는 유전자를 검사해준다고 하는 Soccer Genomics 같은 회사들이 있습니다. 이러한 회사들이 구체적으로 어떤 유전 정보를 활용하여 결과를 보고하는지는 모르겠습니다. 유전체 정보가 정말로 중요한 것은 맞지만, 어떠한 형질을 유전체 정보 만을 이용해서 예측하는데는 생각보다 많은 한계가 있음을 알아야 합니다.

soccer
미국에는 축구를 위한 유전자 검사 및 맞춤 훈련 프로그램을 제공하는 바이오 벤쳐 기업도 나타났습니다.

 

과학계와 산업계의 딜레마

위와 같은 산업들이 과학적으로 비판을 받을 수 밖에 없음에도 불구하고, 위와 같은 시도와 DTC 유전자 검사를 무조건 제한하는 것도 적절하지는 않다고 봅니다. 본디 과학은 불완전한 것에서 시작하고, 여러 시행착오와 관찰을 통해서 발전하기 때문입니다. 비록 지금의 저러한 시도는 근거가 부족하고 비과학적인 측면이 많지만, 자체적으로 점점 발전하고 개발이 된다면 나중에는 훌륭한 모델로 성장할 수도 있다는 것이지요. 즉, 과학적인 관점에서 기업들의 이윤 추구를 위한 저러한 시도는 분명 비판할 수 밖에 없지만, 다른 한편으로는 산업적 측면에서 자금이 모여야 과학도 함께 발전할 수 있기 때문입니다. 그래서 우리 나라의 생명 윤리에 관한 법률 개정도 이러한 산업계의 여러 요구를 반영한 것이라고 생각합니다.

 

그렇다면 DTC 유전자 검사를 어떻게 봐야 하는가?

마지막으로 그렇다면 일반인들은 DTC 유전자 검사를 어디까지 믿고, 신뢰해야 할까요? 아직까지의 수준은 걸음마입니다. 그렇기 때문에 일반인들은 그 한계점을 명확히 알고, 거짓 또는 과장 광고에 속아서는 안됩니다. 사실 지금의 수준은 사주나 타로와 다를 바 없다고 봅니다. 개개인의 유전형을 검사해서 검사 결과는 충분히 정확하게 얻을 수 있는 데에는 이견이 없으나, 그 유전형 만을 가지고 12가지 항목의 형질을 설명한다는 것은 타로 카드로 점괘를 보는 것과 다를바가 없기 때문입니다. 사실 보건복지부에서 어떠한 기준에서 46개 유전자를 선정해서 허용을 했는지도 불분명하고, 유전자들이 형질을 설명하는 것에 대한 과학적 근거도 약한게 사실입니다. 사실 그 이면에는 바이오 벤처 산업을 육성해야한다는 정치적 이해 관계 및 요구가 많았겠지요. 그럼에도 불구하고 현재의 수준은 미약하나, 미래에는 충분히 그럴듯한 서비스가 될지는 아무도 모르겠습니다.