아미노산 치환의 효과 예측: In silico tool의 원리와 종류

앞선 포스팅에서 언급했듯이, 단일염기변이 (SNV)에 의해 코딩하는 아미노산의 바뀌면 (missense variant) 단백질의 기능에도 영향을 주게 됩니다. 이때, 치환되는 아미노산이 단백질 구조와 기능에 영향을 미치는 정도에 따라서 그 효과가 거의 없을수도 있고, 단백질의 기능 자체를 항진시키거나 (gain of function; 드물게) 또는 감소시키게 됩니다 (loss of function). 오늘은 이러한 아미노산 치환에 따른 단백질 기능을 예측하는 컴퓨터 알고리즘 도구들 (In silico tools)의 원리와 종류들 대해서 포스팅하고자 합니다.

In silico tool에 대한 이해가 중요한 이유는 유전자 검사를 통해 변이를 검출한 경우, 변이 해석을 위한 기초 정보를 제공하기 때문입니다. 현재 많은 임상 검사실에서 사용하고 있는 American College of Medical Genetics and Genomics (ACMG)의 염기 변이의 해석에 관한 표준화 가이드라인 (2015 ACMG guideline)에서도 In silico tool의 결과를 판독 기준에 포함 시키고 있습니다. 자세히 살펴보면, 각각의 개발 도구들은 세부적으로 조금 더 기능을 향상시키기 위해 적용한 알고리즘에 차이가 있지만, 사실 대부분의 In silico tool에서 활용하는 기본 원리는 비슷합니다. 아래의 원리는 단백질학에 있어 중요한 내용이지만, 저도 세부적인 내용에 대해서는 전문가가 아니기 때문에, 간단히만 정리하고 넘어가겠습니다.

principle
아미노산 서열이 보존된 영역 (Conserved site) 또는 단백질 구조상 파묻힌 영역 (Buried site)에 변이가 있을 경우, 단백질 기능에 영향을 미쳐 질병이 발생할 확률이 높아진다.
  1. 아미노산 서열의 보존성 (Homology & Conservation): 진화 생물학적 관점에서 여러 종에서 공통적으로 단백질에 존재하는 아미노산 서열 ( conserved area)의 경우, 기능을 수행하는데 중요한 영역일 확률이 높습니다. 보통 이러한 부위를 상동성 (homology)을 갖는다고 합니다. 이러한 부위에 아미노산 치환이 일어나게 되면, 기능이 떨어질 확률이 높습니다. (진화적 관점에서 선택압의 결과) 이러한 원리에 기반하여, 아미노산 서열 정보를 단백질 기능 변화 예측에 사용합니다.
  2. 단백질의 구조 (Structure): 아미노산 치환이 표면 (surface sites)에서 일어나는 경우, 내부의 파묻힌 영역 (buried sites)에서 일어나는 경우보다 단백질 기능 변화에 영향을 적게 줄 확률이 높습니다. binding site 또는 active site의 경우도 변이가 발생할 경우, 기능에 영향을 미칠 확률이 높아집니다. 이러한 구조적인 정보를 다양한 Database로 부터 활용하여, 예측 모델에 포함시킵니다.
  3. Annotation: 그동안 병적 변이(pathogenic variant)로 보고되었던 변이들의 정보, 즉 실제 관찰된 데이터베이스 (database)를 추가적으로 활용하여, 모델을 개선 시킵니다.

위의 데이터는 예측을 위한 모델링의 기초 자료가 됩니다. 위의 자료들을 토대로 다양한 예측 알고리즘을 적용한 것들이 in silico tool로 개발되어 왔습니다. 아래 그림은 이러한 과정을 정리한 모식도를 보여주고 있습니다.

AAS
In silico prediction tool의 전체적인 모델링 과정. 단백질 구조, 아미노산 서열, 기존 보고되었던 DB 정보를 활용하여, 예측 알고리즘을 적용하게 됩니다.

In silico tool에는 많은 종류가 있는데, 이들의 차이는 대부분 적용한 알고리즘의 차이에서 옵니다. 흔히 적용하는 알고리즘은 최근 이슈가 되고있는 기계 학습 (Machine learning) 알고리즘들입니다. 즉 위의 데이터를 머신러닝 알고리즘으로 학습을 시킨 이후에 예측을 하도록 모델링하는 것이지요. 각각의 세부적인 알고리즘들에 대해서는 나중 포스팅에서 다루기로 하고, 여기서는 간단히 정리하고 넘어가겠습니다. 대표적으로 사용되고 있는 알고리즘에는 Random Forest (RF), Support Vector Machine (SVM), Hidden Markov Model (HMM), Artificial Neural Network (ANN), Deep Neural Network (DNN) 등이 있습니다. 아래는 ACMG 가이드라인에 소개된 대표적인 in silico tool들을 정리한 표입니다.

in silico tools
적용 알고리즘과 방법에 따라서 다양한 종류의 in silico prediction tool들이 개발되고 있습니다.

마지막으로 in silico tool들의 한계점을 살펴보고 글을 마치고자 합니다. 사실 위의 표에 소개된 도구 외에도 많은 도구들이 개발되어 논문으로 소개되고 있고, 서로 자기들이 개발한 도구의 성능이 우수하다고 말하곤 합니다. 하지만, 위의 도구들은 그들의 태생적 한계 때문에, 예측 성능이 정확하지는 않습니다. 여기서 태생적 한계라 함은 input data인 structure, sequence, annotation 정보를 말합니다. 모델에 이용된 데이터가 매우 제한적이고, 실제 기능을 측정한 정보가 포함되어 있지 않기 때문에, 아무리 좋은 머신러닝 알고리즘을 적용한다고 하더라도, 성능이 좋을 수가 없습니다. 사실 이러한 이유때문에, 이전에 포스팅했던 MAVE를 활용한 기능 측정 데이터의 필요성이 부각되고 있습니다.

관련 포스팅 보기>

유전자 변이의 해석: 대용량 기능 검사의 필요성

 

아래는 위에서 언급한 in silico tool의 제한점들입니다.

  1. 보통 90%의 민감도로 pathogenic variant를 예측할 때, 위양성률이 30% 정도 수준이라고 합니다. 이는 병적 변이라고 예측해도 실제로는 30%는 그렇지 않다는 의미입니다. 또한 대부분의 논문에서 발표한 성능도 training dataset 및 test dataset에 따라 결과에 많은 차이가 있습니다. 이러한 성능은 실제 임상 진료에 사용하기에는 매우 부족합니다.
  2. 적용 알고리즘만으로는 Input data의 태생적 한계를 극복할 수 없다: 위에서 언급한 것 처럼, 아무리 좋은 알고리즘을 적용한다고 하더라도, input data가 포함하는 정보가 제한적이기 때문에 예측 모델의 태생적 한계를 극복할 수 없습니다.
  3. 예측 도구들 마다 분류하는 방식 및 기준값, scale 등이 제각각이다.: 가령 대표적인 tool인 SIFT의 경우는 0과 1 사이의 값을 계산하여 0.05보다 작은 경우는 damaging 큰 경우는 tolerated으로 구분하는 반면, PolyPhen-2의 경우는 benign, possibly damaging, probably damaging로 구분하며, 반대로 1에 가까울수록 damaging일 가능성이 높도록 예측합니다. 즉 이처럼 값이나 기준이 통일 되어 있지 않으며, 그 의미도 제각각이라서 이해하기가 어려운 측면이 있습니다.
  4. 변이의 양적 형질에 대한 정보를 주지 못한다.: 대부분의 알고리즘은 단백질 영향이 정상인지 병적인지의 2~3가지의 카테고리로 변이를 구분합니다. 하지만 사실 정밀의료의 측면에서는 효소의 활성도가 80% 수준으로 떨어지는지, 0% 수준으로 완전히 없어지는지 등과 같은 양적 형질에도 관심이 큽니다. 그러나 현재 알고리즘은 이러한 정보는 전혀 줄 수 없습니다. 사실 이러한 특징은 약 처방량 결정 등에 이용될 수 있는 약물 대사 효소의 경우에 더 중요하게 됩니다.

 


[References]

Ng, Pauline C., and Steven Henikoff. “Predicting the effects of amino acid substitutions on protein function.” Annu. Rev. Genomics Hum. Genet. 7 (2006): 61-80.

Richards, Sue, et al. “Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.” Genetics in medicine: official journal of the American College of Medical Genetics 17.5 (2015): 405.

광고