[논문소개] 면역억제제 Tacrolimus의 약물 유전체 연구

작년부터 미국에 오기 전까지 부랴 부랴 동시에 4개의 논문을 쓰고 있었는데, 그중 2개 논문의 온라인 출판이 완료 되었습니다. 그래서 앞의 논문을 소개한 김에, 함께 출판된 다른 약물 유전체 연구도 소개를 해볼까 합니다. 이번 연구의 프로젝트도 약리학 교실에 처음 박사 과정으로 들어오면서 부터 시작했던 프로젝트인데, 장기 이식 후의 면역 억제제로 널리 사용하는 Tacrolimus와 관련된 약물 유전체 연구입니다. 개인적으로는 처음으로 본격적으로 NGS 패널과 Microarray인 한국인칩을 분석하면서 진행했던 프로젝트입니다.

[관련 논문 보기]

https://journals.lww.com/transplantjournal/Abstract/9000/Unraveling_the_Genomic_Architecture_of_the_CYP3A.95339.aspx

논문의 제목은 “Unraveling the Genomic Architecture of the CYP3A Locus and ADME Genes for Personalized Tacrolimus Dosing“으로, 장기 이식 수술 후 면역 억제 반응을 위해 사용하는 Tacrolimus의 약물 대사에 관여하는 약물 유전자의 변이들과 개인간의 약물 농도의 변화를 살펴봄으로써, 유전자의 기능에 따라 환자 개인별 최적 처방 용량을 guide하기 위해 진행했던 연구입니다.

[관련 포스팅 보기]

사실 본 연구 주제는 그동안 많은 연구자들이 달려들어서 진행해왔고, CYP3A5의 변이 (rs776746)가 Tacrolimus 대사능과 관련이 있다는 것이 매우 잘 알려져 왔으나, 해당 변이로는 개인간 편차의 50% 정도 밖에 설명할 수가 없어서, 추가적으로 다른 유전자를 발굴하는 것이 많은 연구자들이 목표였습니다. 이번 연구에서는 약물 유전자 전체를 스크리닝할 수 있는 약물 유전체 NGS 패널 (PGx panel) 과 한국인 특이 변이를 탐색할 수 있는 한국인칩 (Korean Chip)를 이용하여, 해당 문제를 풀려고 하였습니다.

연구 결과, 역시 기존에 알려져 있던 CYP3A5의 rs776746 변이 가 제일 중요한 인자로 작용함을 확인했고, 개인별로 드물게 존재하는 CYP3A5, CYP3A4의 희귀 변이 (rare variant)를 이용하면, 추가적으로 rs776746 의 변이가 설명하지 못했던 개인간 편차를 더 잘 설명할 수 있음을 확인하였습니다. 이 결과는 개별 맞춤 약물 처방을 하는데, 개인별로 드물게 존재하는 희귀 변이 (rare variant)를 고려하는 것이 매우 중요함을 시사합니다.

특히, 연구의 분석을 위해서, 서울대 이승근 교수님께서 개발하신 SKAT이라는 분석 방법을 이용하였는데, 이 tool을 이용하여 최초로 CYP1A1 유전자의 희귀 변이들과 Tacrolimus 개인간 편차와의 연관성을 확인하였습니다. 다만, 이번 연구를 통해 다시 한번 약물의 대사는 매우 복잡하고 다양한 인자들이 confounder로 작용하기 때문에 개별 유전형 외에도 유전자 발현에 영향을 미치는 다양한 환경적 변수들을 고려해야함을 깨달을 수 있었습니다. 본 연구 결과가 면역 억제제 Tacrolimus를 투여 받는 환자들이 개별 약물 유전형에 따라서, 부작용이 발생하지 않는 최적의 처방 용량을 결정하는데 도움이 되고, 이를 통해 정밀 의료 (Precision Medicine) 가 실현될 수 있기를 기대합니다.

[관련 Commentary 보기]

https://journals.lww.com/transplantjournal/Citation/9000/COMMENTARY__Unraveling_the_Genomic_Architecture_of.95395.aspx

약물 유전체 연구가 어려운 이유

저는 작년 2월부터 1년 반정도의 기간을 약물유전체 연구를 하고 있습니다. 지도 교수님이신 이민구 교수님과 다양한 약물 반응에 대한 유전적 바이오 마커를 발굴하는 연구를 하고 있는데, 생각보다 쉽지가 않고, 좋은 결과가 나오지 않고 있습니다. 그에 비해 최근에 선천성 기형의 일종인 두개골 조기유합증이라는 희귀질환에 대해 성형외과 및 신경외과와 공동연구에도 참여하고 있는데, 많은 환자들의 유전적 원인들을 확인할 수 있었습니다. 유전적 소인과 형질 간에는 어떠한 연관이 있는 것일까요? 이번 글은 흔히 말하는 Common diseaseRare disease 의 차이와 더불어, 지난 1년반정도의 기간을 약물 유전체 연구를 하며 느낀 점들과 왜 약물 유전체 연구가 어려운지에 대해서 정리해보고자 합니다.

기본적으로 약물 유전체 연구는 크게 여러 사람들이 동일한 약물을 먹었을 때 혈중 유효 농도가 다양하게 나타나는 것에서, 어떤 유전적 차이가 이러한 약물 대사에 기인하는지부작용 발생 유무의 위험도를 예측할 수 있는 유전적 바이오마커가 있는지에 관심을 갖춰 연구되고 있습니다.

관련 포스팅 > 약물 유전학은 왜 정밀의료에서 중요한가?

slide_42

I. 약물 반응은 복합 형질 (Complex trait)이다 : 기본적으로 약물의 대사 과정에는 다양한 약물 효소가 관련합니다. 또한 약물이 흡수되어 배출되기까지의 대사 과정 (ADME) 또는 약동학 (Pharmacokinetics) 과정에는 다양한 요소들이 관여하기 때문에, 한 두가지 유전적 소인이 형질에 결정적 차이를 나타내기 어렵습니다. 복합 형질로 가장 많이 연구되는 질병 중 하나가 2형 당뇨병 (Type 2 Diabetes mellitus; T2DM)인데, 당뇨병 발생의 원인과 그 유전적 요인에 대해서 많은 연구가 진행되었지만 여전히 속 시원한 유전적 원인에 대해서는 알지 못하고 있습니다. 특히 이러한 복합 형질에서 발굴된 유전적 마커들은 형질의 차이에 기여하는 정도가 매우 작아서, 대부분의 효과 크기 (Effect size)가 매우 작습니다. 그래서 그나마 연구가 잘되고 결과가 잘 나오는 것은 효과 크기가 매우 큰 한 두가지의 유전적 인자가 약물의 부작용 발생 유무에 영향을 미치는 경우입니다.

II. 약물 반응의 측정 자체가 어렵다 : 체내 약물 대사능에 영향을 주는 유전적 인자를 확인하고자 하는 연구의 경우, 일단 환자에서 해당 약물 농도 측정 자체가 매우 어렵습니다. 현실적으로 환자들에게는 의사들이 체중이나 대사능 등을 고려하여 약을 처방하기 때문에 복용한 약물의 양도 간격도 전부 달라지게 되며, 약물 농도라는 것도 매우 변동성이 심하기 때문에 언제 채혈하였는지, 다른 약과 함께 복용하였는지 (drug-drug interaction), 음주 & 흡연 여부, 성별 등 다양한 요소에 영향을 받게 됩니다. 기본적으로 이러한 요소들에 대한 명확한 통제가 어렵고, 보정을 한다고 하더라도 그 측정 약물 농도가 명확하게 그 사람의 약물 대사능을 대변하지도 못합니다. 즉, 처음부터 얻어지는 정보 자체에 매우 큰 변동성이 있기 때문에 해당 데이터와 유전적 정보 간의 연관성을 찾으려고 해도, 그 영향이 명확하게 큰 경우가 아니면 연관성을 찾기가 매우 어렵습니다.

III. 약물 대사 경로에는 다양한 대체자가 존재한다. : 이 세상에는 정말로 다양한 약물이 존재합니다. 기본적으로 약물은 간에서 대사되어 신장을 통해 배설된다고 알려져 있습니다만, 약물 개별로 보면 어떤 약물이 정확하게 어떠한 효소에 의해 대사되어 어떠한 형태로 배설되는지, 명확하게 알려져 있는 약물은 그리 많지 않습니다. 희귀 질환의 경우에는 생명에 필수적인 역할을 하는 어떠한 유전자에 문제가 생겨서 바로 질환으로 나타나는 경우가 많습니다. 이는 해당 유전자가 만들어내는 단백질이 중요한 역할을 하고, 다른 유전자가 대신 기능을 해주지 못하기 때문입니다. 반면에 약물 유전자가 만들어내는 약물 효소의 종류는 워낙 다양해서 한 두가지 효소에 문제가 생긴다고 하더라도, 비슷한 다른 효소가 이러한 역할을 대신해주게 됩니다. 그리고 대사 경로 자체가 한가지 방향으로만 정해져 있는 것이 아니라, 어떠한 길이 막히면 다른 길로 돌아갈 수 있는 대체 경로가 존재하게 됩니다. 즉, 약물 대사능은 한가지 유전자와의 1:1 대응이 아니라, 다수의 효소들이 관여하여 복합적으로 나타나기 때문에 동시에 고려해야할 요소들이 많아지게 됩니다. 이를 유전학적으로 나타내보면 다음과 같습니다.

  • A number of isoforms (e.g. Cytochrome P450 family, GST family)
  • Many different transcription mode in a single gene: alternative splicing

 

IV. 연구 방법의 한계 : 유전적 바이오 마커 발굴의 연구 방법으로 많이 사용하고 있는 것이 SNP array chip 또는 NGS를 통한 시퀀싱입니다. SNP array는 주로 GWAS 연구에 사용하기 때문에 인구집단에 흔하게 존재하는 common variant 연구에 사용하고, NGS 시퀀싱은 유전자의 개별 변이까지 모두 확인하기 때문에 rare variant 발굴에 사용하게 됩니다. 그러나 두 연구 방법 모두 한계가 있습니다. 앞에서 언급한 것처럼 복합형질에서 common variant는 그 효과 크기에 대부분 매우 작기 때문에 GWAS 연구로는 새로운 마커의 발굴이 쉽지 않은 편입니다. 반면 Rare variant 발굴에 유리한 NGS 방법으로는 rare variant를 발굴하여도 그 변이의 해석이 쉽지 않고, 더불어 통계적으로 의미 있는 결과를 얻기 위해 필요한 n수가 매우 커서 현실적으로 연구가 어렵게 됩니다.

관련 포스팅 >

[유전자칩 비교] SNP array와 array CGH, 그리고 한국인칩

전장 유전체 연관 분석, GWAS란 무엇인가?

유전자 변이의 해석: 대용량 기능 검사의 필요성

위에서 언급한 여러가지 이유들로 인해, 약물 유전체 연구는 정말 어려운 분야인 것 같습니다. 하지만 다른 한편으로는 정밀의료 분야의 발전으로 가장 많은 사람들이 혜택을 볼 수 있는 분야도 약물과 관련된 분야이기 때문에, 그만큼 의미가 크다고 할 수 있겠습니다. 이러한 여러가지 어려운 점에도 불구하고, 열심히 노력하고 있는 연구자들이 함께 좋은 연구가 나올 수 있었으면 하는 바람입니다.