구조 변이 annotation tool: AnnotSV

유전체 정보로 부터 임상적으로 중요한 변이를 검출하기 위해서는 NGS 시퀀싱 기기의 read 정보로부터 변이 검출까지의 파이프 라인 못지 않게, 얻어낸 수많은 변이로 부터 병인에 중요한 역할을 할 것으로 생각되는 후보 변이를 필터링하는 전략이 매우 중요하게 됩니다. 따라서 적절한 데이터 베이스로 부터 Annotation을 하는 과정은 매우 중요하게 되는데, 이번 포스팅은 다양한 변이 중에서 구조 변이 (Structural variation; SV)을 대상으로 Annotation을 할 수 있는 도구 중에 하나인 AnnotSV에 대해서 소개하고자 합니다. AnnotSV는 이전에 소개했던 Annovar의 CNV (copy number variant) 버젼에 해당한다고 볼 수 있습니다.

[관련 포스팅 보기]

AnnotSV는 다양한 구조 변이의 Annotation 기능 뿐만 아니라, ACMG (American College of Medical Genetics)에서 권장하는 구조 변이의 판독 기준에 따라서, 해당 변이의 중요도를 5가지 카테고리로 구분해줍니다. Input으로는 bed 파일 또는 vcf 파일을 받으며, 다양한 유전자, 조절 인자, 기존에 알려진 병적 변이, 질병과의 연관성 등을 기준으로 ACMG class를 보고해줍니다. 위 그림은 AnnotSV의 이러한 분석 과정을 보여주고 있습니다.

[bed 파일의 기본 구조] bed 파일은 1) 염색체 번호 (Chromosome), 2) 시작 지점 (Start), 3) 끝 지점 (End)의 3가지 기본적인 정보를 토대로 유전체 내의 특정 범위에 대한 정보를 제공해줍니다.

구조 변이 (CNV)의 경우, 적은 수의 염기 변이 (SNV)보다 short-read sequencing을 이용하는 경우, 기술적으로 검출하는 해상도의 한계가 있으며 (deletion보다 duplication 검출이 어려움. 충분한 Depth와 Supporting read가 확보되어야 하며, 이 때문에 translocation도 검출이 어려움.) 변이의 해석도 더 어려운 경우가 많습니다. 따라서, 적절한 한계점을 인지하고 적절한 분석 방법론을 적용하는 것이 중요하며, 현재도 많은 부분들이 현재 진행형으로 연구가 되고 있는 분야입니다.

다만, 최근 ACMG에서 구조 변이의 임상적 해석을 위한 Criteria를 제시해주어, 많은 부분 임상적으로 활용이 가능해진 부분이 있습니다. (아래 참고 논문: Riggs, Erin Rooney, et al. Genetics in Medicine 22.2 (2020): 245-257) 그동안 구조 변이의 해석에 여러가지 어려운 점들이 많았는데, 최근 이 쪽 분야도 많은 툴들과 방법론 들이 개발되고 있는 것 같습니다. 그런 점에서 AnnotSV는 구조 변이를 연구하고 해석하는 입장에서 매우 유용한 툴임이 분명합니다.

[References]

AnnotSV Github: https://github.com/lgmgeo/AnnotSV

AnnotSV Homepage: https://www.lbgi.fr/AnnotSV/

Geoffroy, Véronique, et al. “AnnotSV: an integrated tool for structural variations annotation.” Bioinformatics 34.20 (2018): 3572-3574.

Geoffroy, Véronique, et al. “AnnotSV and knotAnnotSV: a web server for human structural variations annotations, ranking and analysis.” Nucleic Acids Research (2021).

Riggs, Erin Rooney, et al. “Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen).” Genetics in Medicine 22.2 (2020): 245-257.

광고

제 14차 CBMC 희귀질환 센터 화상 컨퍼런스 강의 자료

[07.15(수)]_제14차_CBMC_희귀질환_센터_화상_컨퍼런스

COVID-19는 학회와 강의의 풍경도 많이 바꾸어 놓은 것 같습니다. 개인적으로는 Zoom을 이용하여 화상 인터뷰 및 미팅 등은 한 적이 있는데, 온라인 강의는 이번이 처음입니다.

의국 선배님으로 부터 NGS에 대한 기초적인 개괄에 대한 강의를 부탁받아, 분당 차병원 임상과 선생님들을 대상으로 강의 자료를 준비하였습니다. 강의 자료가 필요하신 분들을 위해 블로그에도 업로드 합니다. (사용은 자유롭게 하시되, 출처만 명시해주시기 바랍니다.)

관련 포스팅 보기>

임상의를 위한 NGS 레포트 해석의 이해

바이오 연구자를 위한 Genome Browser 비교 및 활용

NGS 결과의 임상 적용: Genotype-phenotype correlation

NGS 분석 파이프 라인의 이해: GATK Best Practice

Annovar: Population frequency, in-silico prediction tool 및 기타 database 활용

강의 자료 다운로드 > CBMC conference

약물유전체 Annotation tool: PharmCAT

제가 있는 연구실의 주요 연구 테마는 약물 유전학인데, 저는 어쩌다 보니 운이 좋게도 암종 (Cancer), 선천성 희귀 유전 질환 (Rare Disease), 약물유전체 (Pharmacogenomics) 시퀀싱 데이터를 모두 분석할 기회가 있었습니다. 사실 이 3가지 분야는 유전체 기술을 통한 정밀 의료 실현을 위해 연구자들이 집중하고 있는 주요 카테고리인데, 공통점도 있지만 성격이 많이 다릅니다. 특히, Cancer, Rare Disease와 구분되는 Pharmacogenomics의 가장 큰 차이는 연구 집단이 환자가 아닌 정상 일반인이라는데 있습니다. 이 차이점은 Variant interpretation 접근 과정에서도 큰 차이를 보이는데, 1) 일반적으로 환자의 원인 변이를 찾을 때, Allele Frequency에 의한 variant filtering을 통해 rare variant를 찾는 것 뿐 아니라, 인구 집단에 따른 Common variant도 무시하기가 어렵고,  2) 약물 대사와 관련된 유전자의 발현은 다양한 요소에 영향을 받기 때문에, 한 두개의 유전형으로 기능을 평가한다는 것이 거의 불가능합니다.

이러한 유전체 정보를 통합적으로 활용하기 위해서, 다양한 변이에 기반한 약물 유전형을 annotation 하기 위한 도구가 개발되고 있는데, 이름하여 PharmCAT (Clinical Annotation Tool) 이라고 부르게 되었습니다. 일반적으로 시퀀싱 정보는 이전에 언급한 Annovar를 이용하여, Annotation을 진행하지만, 약물 유전학적 접근에서는 annovar의 annotation 정보로는 임상적인 활용까지 부족한 부분이 많은 것이 사실입니다. 그래서 이번 포스팅에서는 다른 유전체 정보와 구분되는 약물 유전체 정보의 특성과 PharmCAT의 개발 상황에 대해서 정리해보고자 합니다.

관련 포스팅 보기>

약물유전체학 연구 네트워크: PGRN

CPIC Guideline: 유전체 정보를 활용한 약물 처방에 관한 임상 근거 지침

약물 유전체 연구가 어려운 이유

Annovar: Population frequency, in-silico prediction tool 및 기타 database 활용

Haplotype 의미와 Linkage Disequilibrium (LD), Haplotype Phasing 검사 방법

 

다양한 약물 유전자의 변이와 조합, Haplotype status

CYP2C19

발생 과정에서 핵심적인 역할을 하는 유전자는 상대적으로 변이가 적습니다. 그에 비해 약물 유전자는 주변 환경과 식이 등의 영향을 받아서, 인종과 개별에 따라서 매우 다양한 변이를 가지고 있습니다. 대표적인 예로, 96%의 사람들이 중요한 약물 유전자들인 CPIC-Level A 유전자들에 최소 1개 이상의 변이를 가진 것으로 보고되고 있습니다. 이러한 변이의 수 뿐만 아니라, 배수체 (Haplotype, Diploid n = 2) 상태에 따라, 변이가 cis- 또는 trans- 위치인지에 따라서 다양한 조합이 존재하게 됩니다. 위의 그림은 이러한 변이의 종류와 조합에 따른 CYP2C19 유전자의 약물 유전형 상태를 나타내고 있습니다. 단순히 시퀀싱 데이터를 통해서, 개인의 약물 유전형을 추정하는 것이 쉽지 않은 이유입니다. 더불어 약물 유전자들의 경우에는 Star nomenclature를 통해서, 유전형을 표시하는데 시퀀싱 데이터에서 바로 Star allele (ex> *1A, *2B, *3 등등)로 읽어 들이기가 쉽지 않습니다.

약물 유전자 변이와 유전형에 대한 Star nomenclature 정보 보기>

https://www.pharmvar.org/

 

PharmCAT Project

PharmCAT

PharmCAT은 위와 같은 어려움을 극복하여, 시퀀싱 데이터를 통해 개인별 약물 유전형을 추정하고, 최종적으로는 그에 맞는 약물 처방 가이드 라인을 제공하여, 정밀 의료를 현실화 하려고 하는 프로젝트입니다. 일반적인 Annotation 과정 외에도 Haplotype 정보를 통합한 약물 유전형 추정 및, 이를 통합한 약물 처방 가이드 라인 제공이 합쳐진 Pipeline을 구축하는 것이 목표입니다. 현재는 아직 개발 단계의 테스트 버젼만 제공하고 있으나, 곧 어느 정도의 파이프 라인이 구축되지 않을까 생각됩니다. 다만, 아직까지는 약물 유전형에 따른 충분한 임상 정보와 가이드 라인이 구축되어 있지 않아서, 약물 유전체 연구가 더 활발하게 이루어져야 진정한 의미의 정밀 의료가 실현 될 수 있지 않을까 생각됩니다.

 


[References]

Sangkuhl, Katrin, et al. “Pharmacogenomics Clinical Annotation Tool (Pharm CAT).” Clinical Pharmacology & Therapeutics (2019).

Sangkuhl, Katrin, et al. “Pharmacogenomics Clinical Annotation Tool (Pharm CAT).” Clinical Pharmacology & Therapeutics 107.1 (2020): 203-210.

Kalman, Lisa V., et al. “Pharmacogenetic allele nomenclature: international workgroup recommendations for test result reporting.” Clinical Pharmacology & Therapeutics 99.2 (2016): 172-185.


PharmCAT Web-sources:

http://pharmcat.org/

https://www.pharmgkb.org/page/pharmcat

https://github.com/PharmGKB/PharmCAT

NGS DNA-seq pipeline: GATK Best Practice Code – Part3. Vcf manipulation

앞선 포스팅의 두가지 과정을 거치고 나서 생성된 VCF 파일을 이용하면 드디어 분석 가능한 변이들을 확인할 수 있습니다. 그러나 실제로 이 데이터를 열어보면, 지저분하고 활용하기 위해서는 어느 정도 가공이 필요합니다. 그래서 이번 포스팅은 VCF Filter를 적용하여 분석을 위한 변이들을 정제하고, 분석에 참조하기 위한 Annotation 작업을 위한 Code까지 정리해보도록 하겠습니다.

관련 포스팅 보기>

NGS 분석 파이프 라인의 이해: GATK Best Practice

NGS DNA-seq pipeline: GATK Best Practice Code – Part1. Fastq to Bam

NGS DNA-seq pipeline: GATK Best Practice Code – Part2. Bam to Vcf

vcf_3

[일반적인 VCF 파일의 구조]

IV. Variant Filtration and Annotation : Genotype Refinement Workflow

VCF call을 하고 나면, 많은 변이 데이터가 생산되는데, 실제로 데이터의 퀄리티와 오류를 보정하는 작업이 필요합니다. 이 부분은 아직까지 확립된 최적의 Work Flow는 없지만, GATK에서는 Genotype Refinement Workflow를 제공하고 있습니다. 여기서는 Call된 genotype이 인구집단이나 가계도 정보에 근거하여 적절한 Call인지를 판단하게 됩니다. 가계도의 경우에는 양쪽 부모 정보가 모두 (Trio) 필요합니다. 아래에서는 이 Workflow를 따라 Code를 작성해보도록 하겠습니다.

Genotype refinement

1. CalculateGenotypePosteriors

VCF call을 통해 생성된 genotype을 기반으로 이번에는 거꾸로 Genotype의 posterior를 계산해줍니다. 이 결과를 토대로 변이 call을 판정해서, Genotype의 quality를 계산합니다. 이 과정에는 인구 집단이나 가계도의 Prior 정보를 이용하는데, 가계도 정보를 이용하기 위해서는 PED 파일 생성이 필요합니다.

PED 파일 생성 정보는 아래 링크를 참고하시기 바랍니다.

http://zzz.bwh.harvard.edu/plink/data.shtml

gatk --java-options 'Xmx16g' 'Xms8g' CalculateGenotypePosteriors -V [cohort.recal.vcf] \
-ped family.ped --skip-population-priors -O [cohort.GP.vcf]

2. Filter Low Quality Genotypes

위의 과정에서 계산된 GQ 값을 기준으로 Filter 조건을 걸어서 지저분한 변이 call들을 제외 시킬 수 있습니다. 아직까지 표준화된 Filter 조건은 없기 때문에, 사용자가 적절하게 필터 조건을 설정해주어야 합니다. 여기서 선언해주는 조건은 흔히 JEXL expression이라고 부르는 방법으로 작성을 해야한다고 하는데, 여기서는 널리 쓰이는 Filter option인 GQ < 20 을 걸도록 하겠습니다.  필요에 따라 수치를 변경시키거나, 조건을 바꾸면 됩니다. 자세한 내용은 아래에서 찾아보시기 바랍니다.

article about using JEXL expressions

https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_hellbender_tools_walkers_filters_VariantFiltration.php

마지막으로 filter조건에 부합하는 변이만 남기기 위해, GATK의 SelectVariants 이용하도록 하겠습니다.

gatk --java-options 'Xmx16g' 'Xms8g' VariantFiltration -R [hg19_reference.fa] -V [cohort.GP.vcf] \
--genotype-filter-expression "GQ<20" --genotype-filter-name "lowGQ" -O [cohort.filter.vcf]
gatk --java-options 'Xmx16g' 'Xms8g' SelectVariants -V [cohort.filter.vcf] --exclude-filtered true --max-nocoll-fraction 0.1 -O [cohort.filtered.vcf]

3. VCF annotation using Annovar

이제 어느 정도 정제가 된 변이 데이터셋이 생성되었습니다. 이제 불러온 변이들에 맞는 annotation 작업을 진행하면 분석을 진행할 수가 있습니다. 최근에 GATK에서 Funcotator를 개발하여, annotation이 가능해졌는데 아직까지는 Annovar를 이용하는게 대세이므로, Annotation 작업은 Annovar를 이용하도록 하겠습니다.

관련 포스팅 보기>

Annovar: Population frequency, in-silico prediction tool 및 기타 database 활용

Annovar 홈페이지를 통해 다운로드 신청을 하면,  등록된 메일로 Kai Wang에게서 자동으로 다운로드 url을 받을 수 있습니다. Annotation을 원하는 Database의 크기가 크기 때문에, 처음에는 DB 다운로드에 시간이 많이 소요가 될 수 있습니다.

Annovar를 설치하고, 아래 부위에 원하는 DB의 이름을 찾아서 넣으면 다운로드가 진행됩니다.

annotate_variation.pl -buildver hg19 -downdb -webfrom annovar [refGene] humandb

Annotation은 아래 code를 통해서 진행합니다. 여기서는 refGene, cytoBand, avsnp150, dbnsfp35a, exac03, gnomad_exome, clinvar_20190305 DB를 이용하여 annotation 작업을 진행하도록 하겠습니다. 각각의 DB는 Gene-based, Region-based, Filter-based annotation에 해당하는 카테고리가 있고, 이를 operation 옵션에 g, r, f를 이용하여 나타내줍니다.

table_annovar.pl [cohort.filtered.vcf] humandb/ -buildver hg19 -out [myanno] -protocol refGene,cytoBand,avsnp150,dbnsfp35a,exac03,gnomad_exome,clinvar_20190305 -operation g,r,f,f,f,f,f -nastring . --vcfinput --remove --thread 8

[References]

VCFtools를 이용한 VCF filtering: 위에서는 GATK를 이용하였지만, 과거에 많이 사용하였던 VCFtools를 이용하는 방법도 있습니다. 자세한 내용은 아래를 참조하시기 바랍니다.

http://www.ddocent.com/filtering/

GriffithLab에서 소개하고 있는 VCF filter 과정: 해당 내용은 GATK4로 넘어오면서 코드가 약간 달라졌습니다. 다만 전반적인 과정은 유사하므로, 참고하시기 바랍니다.

https://pmbio.org/module-04-germline/0004/02/02/Germline_SnvIndel_FilteringAnnotationReview/

Annovar: Population frequency, in-silico prediction tool 및 기타 database 활용

오늘 포스팅은 Annovar에 관한 내용으로 작성해볼까 합니다. 언젠가 한번은 정리할 필요가 생각하고 있던 내용인데, 이제서야 차례가 왔네요. 시퀀싱 기술이 보편화되면서, 대부분 표준화된 파이프라인을 이용하여 시퀀싱 raw data로부터 변이를 검출하는 Up-stream analysis는 대부분의 업체에서 대동소이한 결과를  주고 있습니다. 연구자의 입장에서 사실 더 중요한 것은 이 정보를 어떻게 효과적으로 이용할까 하는 부분에 있고, 그래서 Bam file 또는 VCF file에서 시작하는 Down-stream analysis가 더 중요하다고 볼 수 있습니다. 그 첫 단계로 필요한 적절한 정보를 활용하여 주석을 다는 과정이 있고, 이를 우리는 Annotation (주석 달기) 과정이라고 합니다. 그리고 이 과정에서 우리는 대부분 Annovar를 사용하게 됩니다. 물론 업체에 의뢰하면 대부분 기본적인 Annotation이 끝난 파일도 전달을 받게 되는데, 사실 필요 없는 내용이 잔뜩 달려서 파일의 용량만 무지막지하게 커진다거나, 정작 필요한 내용이 빠진 경우도 종종 발생합니다. 그래서 이번에 다룰 내용은 주석 달기의 각 항목에 대한 의미와 주요 활용 항목에 대해서 정리해보겠습니다.

관련 포스팅 보기>

NGS 분석 파이프 라인의 이해: GATK Best Practice

Annovar는 Perl script 기반으로 짜여 있어서, linux에서 명령어를 주면 자동으로 annotation을 달아주게 되어있습니다. 이때 몇가지 option에 따라서 원하는 내용대로 다양한 Database에서 관련 내용을 annotation 할 수가 있습니다. 더 많은 내용을 추가함에 따라서 연산 시간과 최종 파일 용량은 커지고, 가끔은 이것이 오히려 독이 되기도 합니다. 따라서 원하는 내용을 입맛에 따라 최적화하여 활용하는 것이 필요하게 됩니다. 아래 그림은 Annovar를 이용하여, 주석을 다는 과정의 전반적인 흐름을 보여주고 있습니다. 간단히, “Database 파일을 통째로 다운 받아서, Perl script 기반의 annotate_variation.pl을 실행하면, 그에 맞는 내용을 찾아서 주석으로 달아준다.” 정도로 말할 수 있겠습니다.

ANNOVAR_main_package_workflows.svg.png

Annovar에서 제공하는 Database 목록 보기

위 페이지에서는 다운로드 가능한 Database의 목록들을 보여주고 있습니다. 필요한 항목의 이름과 업데이트 날짜 등을 참고하여, DB를 다운로드하고 적절하게 활용하기 바랍니다.

annotate_variation.pl -buildver hg19 -downdb -webfrom annovar [위 목록의 Database 이름] humandb/

 


I. Gene-based Annotation

VCF 파일에서 가장 핵심 정보는 사실 몇개 없습니다. 정확하게는 5개 정보만 있어도 충분한데, “몇번째 염색체 (Chr)의 몇번째 염기 위치 (Position)가 원래 무엇인데 (Ref) 무엇 (Alt)으로 바뀌었다.” (흔히 이러한 형태의 파일을 MAF format이라고 합니다.) 이 말을 하기 위해서, 부수적인 내용들이 잔뜩 달려 있는 셈이죠. 그러나 이 정보만을 이용해서는 사람들이 알아들을 수가 없습니다. 우리는 “어떤 유전자의 몇번째 엑손 영역의 몇번째 아미노산이 무엇으로 바뀌었다“와 같은 정보가 필요하죠. 그런데 사실 아직도 유전자의 정확한 정의와 위치에 대해서는 100% 밝혀지지 않았습니다. 따라서 이 유전자라고 하는 부분도 다양한 데이터 베이스가 존재하게 됩니다. 대표적으로 RefGene, UCSC/Ensemble Gene, Known Gene, CCDS 등등의 데이터 베이스가 있습니다. 따라서 여기서 어떤 데이터 베이스를 이용하여, annotation을 하냐에 따라서 출력이 달라집니다. (하지만 사실 큰 차이는 없습니다. 대부분의 업체에서는 2~3개의 데이터 베이스를 이용하여 annotation을 해주는데, 대부분 내용이 중복되어 용량만 커짐… 그래서 개인적으로는 그냥 RefGene만으로도 충분합니다.)

<가장 핵심적인 VCF 파일의 정보> = MAF format

Chromosome : Position (Start_End) : Reference sequence > Alternative sequence

위의 database를 이용하면, 위의 정보가 어떤 유전자에 속하고, 해당 유전자에서 어떤 기능을 하는 어떤 부위의 변이인지, 기능적으로 변화가 있는지 없는지 등에 대한 기본적인 정보를 제공해주게 됩니다. 어떻게 보면 가장 핵심적인 정보를 추가하는 부분이라고 할 수 있습니다.

 

II. Filter-based Annotation

사실 변이를 Genome Browser에서 찾는 가장 빠른 방법은 rsID를 이용하는 것입니다. 그런 점에서 dbSNP 또는 avSNP의 rsID를 주석으로 달아놓는 것은 활용도가 높습니다. rsID는 변이 보고가 점점 늘어남에 따라서 계속 갱신되고 있는데, 가장 최근 database는 avSNP 151 버젼이지만, 보편적으로 아직까지는 avSNP 147 버젼을 사용하고 있는 것 같습니다.

관련 포스팅 보기>

바이오 연구자를 위한 Genome Browser 비교 및 활용

아미노산 치환의 효과 예측: In silico tool의 원리와 종류

변이빈도와 효과 크기

사실 변이의 생물학적 의미를 해석하는 과정에서 정말로 중요한 내용은 일반 인구 집단에서 얼마나 흔하게 존재하는가?에 있다고 할 수 있습니다. 그러한 의미에서 Population Frequency 정보는 변이의 의미를 파악하는데 매우 중요한 단서를 제공해 줍니다. 이와 같은 Population Frequency는 다양한 집단에서 시퀀싱을 시행하여, 그 빈도를 계산한 다양한 데이터 베이스에 기반하게 되는데, 대표적으로 EXAC, gnomAD, 1000Genome, ESP database 등이 있습니다. 이때 중요한 점은 인구 집단이 얼마나 대표성을 띄는가?에 있다고 볼 수 있는데, 빈도를 계산한 인구 집단의 크기 (n수)와 인종적 배경 (Ethnicity) 등이 특히 중요합니다. 더불어, Rare variant의 경우는 더욱더 인종에 따른 차이가 크기 때문에 일반적으로는 한국인의 경우는 EAS (East Asian population) 정보를 이용하지만, 해당 데이터 베이스가 충분히 한국인을 대표하지 못하는 경우가 많습니다. (위의 데이터 베이스에서는 gnomAD가 가장 n 수가 가장 크기 때문에 저는 주로 EXAC과 gnomAD의 EAS 인구 집단 정보를 활용하고 있습니다.)

사실 데이터 용량이 가장 뻥튀기 되는 부분이 in-silico prediction tool 부분에 있습니다. 아미노산 치환 효과를 예측해주는 tool은 100가지가 넘게 있는데, 각 tool 들이 예측해주는 정보를 얼마나 포함할 것인가에 따라서 추가되는 정보도 달라집니다. 크게 얼마나 진화적으로 보존된 지역인지 또는 아미노산 구조적으로 변화를 유발하는지 등에 기반한 알고리즘으로 개발되어, SIFT, PolyPhen과 같은 고전적 tool부터, GERP, SiPhy, MutationTaster, FATHMM, MetaSVM, CADD, DANN과 같은 다양한 tool이 존재합니다. (역시나 이쪽도 절대 지존은 없기 때문에 경우에 따라 적절하게 활용합니다. 보통 Voting Method, 즉 10개 또는 선택된 갯수의 서로 다른 알고리즘 중에서 몇개가 Deleterious로 예측하는가? 와 같은 방식으로 많은 경우 활용하게 됩니다. 저는 개인적으로 Ensemble 기반의 tool을 주로 활용하고 있습니다.)

마지막으로 임상 정보들을 annotation 하는 database가 존재하는데, 대표적으로 OMIM, HGMD, ClinVar, COSMIC 등등이 있습니다. 희귀 유전 질환에 대해서 연구를 한다면, OMIM이나 HGMD, Cancer 관련 연구를 한다면, COSMIC database 정보를 annotation 하는 것이 도움이 될 수 있습니다. 그러나 사실 이렇게 annotation을 덕지덕지 붙이다보면 파일 크기가 엄청나게 불어나게 됩니다. 현재까지 대부분의 연구자들은 Coding region의 Functional variant에만 관심이 있기 때문에, 1차적으로 Gene-based annotation 후 exon 영역의 functional variant만 filtering하고나서, 해당 변이들에 대해서 annotation 하는 방법이 시간과 데이터를 절약하는 방법이 될 수 있습니다.

 

III. 기타 annotation 방법

관련 포스팅 보기>

암유전체 분석: Driver mutation prediction tools

위의 annovar를 이용하는 방법은 linux 기반의 서버를 통해서 대용량으로 실행하는 방법입니다. 그러나 서버를 구축하지 못하거나, linux를 친숙하게 이용하지 못하는 경우에는 그러면 어떻게 annotation을 하는가? 에 대한 문제가 발생합니다. 이를 위해서 다양한 Web 기반의 annotation tool 들이 존재하게 됩니다. 가장 대표적인 것이 wANNOVAR입니다. 기타 cancer를 다룬다면, Oncotator 또는 Cancer Genome Interpreter도 대안이 될 수 있습니다. 그러나 역시 이러한 tool들은 Annovar에 비해서 자유도는 떨어지기 때문에 기능에 제약이 있다는 단점이 있습니다. 마지막으로 R을 활용하여, annotation이 가능한 몇가지 package들이 개발되어 있습니다. 대표적인 package로는 MAFtools, VariantAnnotation 등이 있으나, 역시 기능이 AnnoVar에 비하면 제한적입니다. 그러나, 소수의 변이에 대해서 빠르게 annotation이 필요한 경우라면 이러한 도구들도 적절하게 활용하는게 도움이 될 수 있습니다. 더 자세한 정보는 아래 github를 활용하시기 바랍니다.

 


 

References>

Yang, Hui, and Kai Wang. “Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR.” Nature protocols 10.10 (2015): 1556.

ANNOVAR: http://annovar.openbioinformatics.org/en/latest/

wANNOVAR: https://github.com/WGLab/doc-ANNOVAR

Oncotator: https://github.com/broadinstitute/oncotator

VariantAnnotation: https://github.com/Bioconductor/VariantAnnotation

MAFtools: https://github.com/PoisonAlien/maftools

Web resources for Bioinformatics database: https://netbiolab.org/w/Web_Resources